Skip to main content
Log in

Elimination and Substitution Compete During Amination of Poly(vinyl chloride) with Ehtylenediamine: XPS Analysis and Approach of Active Site Index

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Various chemical modification methods have been tried on PVC polymer materials for recycling and functionalization purpose. These methods employ substitution, elimination (dehydrochlorination) and grafting polymerization processes. PVC is treated with ethylenediamine (EDA) for amine grafting since it is a reactive amine for substitution and efficient removal of chlorides. Nevertheless, optimum conditions for substitution (amination) and significance of its competition with elimination have not been reported in detail so far. In this study, PVC resin has been treated with 99% EDA and 80% EDA (aqueous), and also 9.1% THF solution of PVC has been treated with 99% EDA at varying temperatures (RT to 85 °C or RT to 65 °C). Additionally, PVC membranes have been treated with 99% EDA and 80% EDA (aqueous) at three different temperatures (RT, 50 °C, 75 °C). Effects of temperature and solvent on the degrees of amination and dehydrochlorination have been elaborated. Up to 99% dechlorination and 34% amination is possible with the use of EDA. Direct amination of membranes facilitates production of ready-cast aminated PVC membranes. FTIR Spectroscopy was used to study chemical structures. Morphology was observed via scanning electron microscopy (SEM) and atomic contents were analyzed via X-ray photoelectron spectroscopy (XPS) in order to survey the degree of amination etc. UV-Visible Spectroscopy was used to characterize the length of conjugation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jia, L. Hu, G. Feng, C. Bo, M. Zhang, and Y. Zhou, Mater. Chem. Phys., 190, 25 (2017).

    Article  CAS  Google Scholar 

  2. C. Lăzăroaie, E. Rusen, B. Mărculescu, T. Zecheru, and G. Hubcă, UPB Sci. Bull. Ser. B, 72, 127 (2010).

    Google Scholar 

  3. Y. Saeki and T. Emura, Prog. Polym. Sci., 27, 2055 (2002).

    Article  CAS  Google Scholar 

  4. G. R. Krishnan, K. S. Niveditha, and K. Sreekumar, Indian J. Chem., 52, 428 (2013).

    Google Scholar 

  5. J. Zhu, Y. Su, X. Zhao, Y. Li, J. Zhao, X. Fan, and Z. Jiang, Ind. Eng. Chem. Res., 53, 14046 (2014).

    Article  CAS  Google Scholar 

  6. S. M. Hosseini, M. Askari, P. Koranian, S. S. Madaeni, and A. R. Moghadassi, J. Ind. Eng. Chem., 20, 2510 (2014).

    Article  CAS  Google Scholar 

  7. Q. Shi, Q. Fan, W. Ye, J. Hou, S. C. Wong, X. Xu, and J. Yin, ACS Appl. Mater. Interfaces, 12, 6 (2014).

    Google Scholar 

  8. J. Simmchen, R. Ventura, and J. Segura, Trans. Med. Rev., 26, 1 (2016).

    Article  Google Scholar 

  9. S. Moulay, Prog. Polym. Sci., 35, 303 (2010).

    Article  CAS  Google Scholar 

  10. G. Sneddon, J. C. McGlynn, M. S. Neumann, H. M. Aydin, H. H. Yiu, and A. Y. Ganin, J. Mater. Chem. A, 5, 11864 (2017).

    Article  CAS  Google Scholar 

  11. S. Balci, O. Birer, and S. Suzer, Polymer, 45, 7123 (2014).

    Article  CAS  Google Scholar 

  12. T. Kameda, M. Ono, G. Grause, T. Mizoguchi, and T. Yoshioka, Polym. Degrad. Stab., 94, 107 (2009).

  13. T. Yoshinaga, M. Yamaye, T. Kito, T. Ichiki, M. Ogata, J. Chen, H. Fujino, T. Tanimura, and T. Yamanobe, Polym. Degrad. Stab., 86, 541 (2004).

    Article  CAS  Google Scholar 

  14. B. Balakrishnan, D. S. Kumar, Y. Yoshida, and A. Jayakrishnan, Biomaterials 26, 3495 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. J. T. Allan, L. E. Prest, and E. B. Easton, J. Membr. Sci., 489, 175 (2005).

    Article  CAS  Google Scholar 

  16. M. S. Mohy Eldin, T. M. Tamer, M. A. Abu Saied, E. A. Soliman, N. K. Madi, L. Ragab, and I. Fadel, Adv. Polym. Technol., 0, 21640 (2015).

    Google Scholar 

  17. J. Liu, Y. Q. Li, and W. J. Zheng, Monatsh. Chem., 140, 1425 (2009).

    Article  CAS  Google Scholar 

  18. B. Balakrishnan, N. R. James, and A. Jayakrishnan, Polym. Int., 54, 1304 (2005).

    Article  CAS  Google Scholar 

  19. M. de AMMS, M. Helena, R. M. N. De Assunção, H. M. Soares, A. P. Cangani, D. A. Cerqueira, and C. D. S. Meireles, J. Appl. Polym. Sci., 115, 1474 (2010).

    Article  CAS  Google Scholar 

  20. L. Guo, G. Shi, and Y. Liang, Polymer, 42, 5581 (2001).

    Article  CAS  Google Scholar 

  21. R. Q. Fu, J. J. Woo, S. J. Seo, J. S. Lee, and S. H. Moon, J. Membr. Sci., 309, 156 (2008).

    Article  CAS  Google Scholar 

  22. C. W. Hwang, C. M. Oh, and T. S. Hwang, J. Adhes. Interface, 15, 1 (2014).

    Article  Google Scholar 

  23. J. T. Allan, L. E. Prest, and E. B. Easton, J. Membr. Sci., 489, 175 (2015).

    Article  CAS  Google Scholar 

  24. A. M. Saxman, R. Liepins, and M. Aldissi, Prog. Polym. Sci., 11, 57 (1985).

    Article  CAS  Google Scholar 

  25. T. Masuda, Encyclopedia of Polymeric Nanomaterials, Springer-Verlag, Heidelberg, 2015.

    Google Scholar 

  26. J. A. Stowell, A. J. Amass, M. S. Beevers, and T. R. Farren, Polymer, 30, 195 (1989).

    Article  CAS  Google Scholar 

  27. A. Singh, M. S. M. Rawat, and C. S. Pande, J. Appl. Polym. Sci., 118, 876 (2010).

    CAS  Google Scholar 

  28. M. Beltran and A. Marcilla, Eur. Polym. J., 33, 1135 (1997).

    Article  CAS  Google Scholar 

  29. L. Guo, G. Shi, and Y. Liang, Synth. Met., 104, 129 (1999).

    Article  CAS  Google Scholar 

  30. A. Baruya, D. L. Gerrard, and W. F. Maddams, Macromolecules, 16, 578 (1983).

    Article  CAS  Google Scholar 

  31. M. Ghaemy and I. Gharaebi, Eur. Polym. J., 36, 1967 (2000).

  32. F. Sondheimer, D. A. Ben-Efraim, and R. Wolovsky, J. Am. Chem. Soc., 83, 1675 (1961).

    Article  CAS  Google Scholar 

  33. D. Braun and D. Sonderhof, Polym. Bull., 14, 39 (1985).

    Article  CAS  Google Scholar 

  34. K. Aouachria and N. Belhaneche-Bensemra, Polym. Degrad. Stab., 91, 504 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Canlier or Taek Sung Hwang.

Additional information

Acknowledgments: This work was supported by the Commercializations Promotion Agency for R&D Outcomes Grant funded by the Korean Government (MSIP) (2017, 2017K000215, Joint Research Corporations Support Program). This work was also supported by the Human Resource Training Program for Regional Innovation and Creativity through the Ministry of Education and National Research Foundation of Korea (NRF- 2015H1C1A1035652). This research was supported by the Ministry of Trade, Industry and Energy (MOTIE) and the Korea Institute for the Advancement of Technology (KIAT) (N0002383, 2018).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, E.J., Park, B.C., Kim, Y.J. et al. Elimination and Substitution Compete During Amination of Poly(vinyl chloride) with Ehtylenediamine: XPS Analysis and Approach of Active Site Index. Macromol. Res. 26, 913–923 (2018). https://doi.org/10.1007/s13233-018-6123-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6123-z

Keywords

Navigation