Skip to main content
Log in

Chemical and electrochemical grafting of polythiophene onto poly(vinyl chloride): synthesis, characterization, and materials properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 17 January 2017

Abstract

A facile strategy for chemical and electrochemical grafting of polythiophene onto poly(vinyl chloride) (PVC) is reported. For this purpose, a thiophene-functionalized PVC macromonomer (ThPVCM) was synthesized using a Kumada cross-coupling reaction. The synthesis of macromonomer was verified by means of Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopes. The graft copolymerization of thiophene monomers onto ThPVCM was initiated by oxidized thiophene groups coupled onto PVC backbone after addition of ferric chloride (FeCl3) via oxidation polymerization method. Moreover, the electrochemical graft copolymerization of thiophene onto ThPVCM was performed via constant potential electrolysis in the acetonitrile (ACN)–tetraethylammonium tetrafluoroborate (TEAFB) solvent–electrolyte couple. The PVC-g-PTh obtained was characterized by means of FTIR spectroscopy and gel permeation chromatography (GPC), and its electroactivity behavior was verified under cyclic voltammetric conditions. Moreover, thermal behavior of the synthesized polymer was investigated by means of thermogravimetric analysis (TGA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jaymand M (2013) Recent progress in chemical modification of polyaniline. Prog Polym Sci 38:1287–1306

    Article  CAS  Google Scholar 

  2. Jaymand M, Hatamzadeh M, Omidi Y (2015) Modification of polythiophene by the incorporation of processable polymeric chains: recent progress in synthesis and applications. Prog Polym Sci 47:26–69

    Article  CAS  Google Scholar 

  3. Kim N, Kang H, Lee JH, Kee S, Lee SH, Lee K (2015) Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method. Adv Mater 27:2317–2323

    Article  CAS  Google Scholar 

  4. Kena-Cohen S, Forrest SR (2010) Room-temperature polariton lasing in an organic single-crystal microcavity. Nat Photonics 4:371–375

    Article  CAS  Google Scholar 

  5. Qin W, Lohrman J, Ren S (2014) Magnetic and optoelectronic properties of gold nanocluster–thiophene assembly. Angew Chem Int Ed 53:7316–7319

    Article  CAS  Google Scholar 

  6. Inzelt G (2011) Rise and rise of conducting polymers. J Solid State Electrochem 15:1711–1718

    Article  CAS  Google Scholar 

  7. Bagheri H, Ayazi Z, Naderi M (2013) Conductive polymer-based microextraction methods: a review. Anal Chim Acta 767:1–13

    Article  CAS  Google Scholar 

  8. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926

    Article  CAS  Google Scholar 

  9. Aydin M, Esat B (2015) A polythiophene derivative bearing two electroactive groups per monomer as a cathode material for rechargeable batteries. J Solid State Electrochem 19:2275–2281

    Article  CAS  Google Scholar 

  10. Huynh TP, Sharma PS, Sosnowska M, D’Souza F, Kutner W (2015) Functionalized polythiophenes: recognition materials for chemosensors and biosensors of superior sensitivity, selectivity, and detectability. Prog Polym Sci 47:1–25

    Article  CAS  Google Scholar 

  11. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541

    Article  CAS  Google Scholar 

  12. Gélinas S, Rao A, Kumar A, Smith SL, Chin AW, Clark J, van der Poll TS, Bazan GC, Friend RH (2014) Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343:512–516

    Article  Google Scholar 

  13. Wang B, Song J, Yuan H, Nie C, Lv F, Liu L, Wang S (2014) Multicellular assembly and light-regulation of cell–cell communication by conjugated polymer materials. Adv Mater 26:2371–2375

    Article  CAS  Google Scholar 

  14. Hasanov R, Bilgiç S, Gece G (2011) Experimental and theoretical studies on the corrosion properties of some conducting polymer coatings. J Solid State Electrochem 15:1063–1070

    Article  CAS  Google Scholar 

  15. Massoumi B, Javid M, Hatamzadeh M, Jaymand M (2015) Polystyrene-graft-poly(2,2′-bithiophene): synthesis, characterization, and properties. J Mater Sci Mater Electron 26:2887–2896

    Article  CAS  Google Scholar 

  16. Massoumi B, Alipour N, Fathalipour S, Jaymand M (2015) Nanostructured poly(2,2′-bithiophene-co-3,4-ethylenedioxythiophene): synthesis, characterization, and properties. High Perform Polym 27:161–170

    Article  CAS  Google Scholar 

  17. Vamvounis G, Jonsson M, Malmstrm E, Hult A (2013) Synthesis and properties of poly(3-n-dodecylthiophene) modified thermally expandable microspheres. Eur Polym J 49:1503–1509

    Article  CAS  Google Scholar 

  18. Bendrea AD, Fabregat G, Torras J, Maione S, Cianga L, del Valle LJ, Cianga I, Aleman C (2013) Polythiophene-g-poly(ethylene glycol) graft copolymers for electroactive scaffolds. J Mater Chem B 1:4135–4145

    Article  CAS  Google Scholar 

  19. Das S, Chatterjee DP, Nandi AK (2014) Water-soluble dual responsive polythiophene-g-poly(methoxyethoxy ethyl methacrylate)-co-poly(N,N-diethylamino ethyl methacrylate) for different applications. Polym Int 63:2091–2097

    Article  CAS  Google Scholar 

  20. Hatamzadeh M, Jaymand M (2014) Synthesis and characterization of polystyrene-graft-polythiophene via a combination of atom transfer radical polymerization and Grignard reaction. RSC Adv 4:16792–16802

    Article  CAS  Google Scholar 

  21. Lin SH, Wu SJ, Ho CC, Su WF (2013) Rational design of versatile self-assembly morphology of rod–coil block copolymer. Macromolecules 46:2725–2732

    Article  CAS  Google Scholar 

  22. Wang M, Zou S, Guerin G, Shen L, Deng K, Jones M, Walker GC, Scholes GD, Winnik MA (2008) A water-soluble pH-responsive molecular brush of poly(N,N-dimethylaminoethyl methacrylate) grafted polythiophene. Macromolecules 41:6993–7002

    Article  CAS  Google Scholar 

  23. Maione S, Fabregat G, del Valle LJ, Bendrea AD, Cianga L, Cianga I, Estrany F, Aleman C (2015) Effect of the graft ratio on the properties of polythiophene-g-poly(ethylene glycol). J Polym Sci Polym Phys 53:239–252

    Article  CAS  Google Scholar 

  24. Cianga L, Bendrea AD, Fifere N, Nita LE, Doroftei F, Ag D, Seleci M, Timur S, Cianga I (2014) Fluorescent micellar nanoparticles by self-assembly of amphiphilic, nonionic and water selfdispersible polythiophenes with “hairy rod” architecture. RSC Adv 4:56385–56405

    Article  CAS  Google Scholar 

  25. An YC, Konishi G (2012) Facile synthesis of high refractive index thiophene-containing polystyrenes. J Appl Polym Sci 124:789–795

    Article  CAS  Google Scholar 

  26. Cianga I, Mercore VM, Grigoras M, Yagci Y (2007) Poly(thienyl-phenylene)s with macromolecular side chains by oxidative polymerization of well-defined macromonomers. J Polym Sci Polym Chem 45:848–865

    Article  CAS  Google Scholar 

  27. Li H, Johansson-Seechurn CCC, Colacot TJ (2012) Development of preformed Pd catalysts for cross-coupling reactions. ACS Catal 2:1147–1164

    Article  CAS  Google Scholar 

  28. Shin M, Oh JY, Byun KE, Lee YJ, Kim B, Baik HK, Park JJ, Jeong U (2015) Polythiophene nanofibril bundles surface-embedded in elastomer: a route to a highly stretchable active channel layer. Adv Mater 27:1255–1261

    Article  CAS  Google Scholar 

  29. Yao Y, Gao J, Bao F, Jiang S, Zhang X, Ma R (2015) Covalent functionalization of graphene with polythiophene through a Suzuki coupling reaction. RSC Adv 5:42754–42761

    Article  CAS  Google Scholar 

  30. Han MG, Foulger SH (2006) Facile synthesis of poly(3,4-ethylenedioxythiophene) nanofibers from an aqueous surfactant solution. Small 2:1164–1169

    Article  CAS  Google Scholar 

  31. Lee KH, Morino K, Sudo A, Endo T (2011) Preparation and properties of a novel polythiophene, poly[(3-hexyliminomethyl)thiophene] with a high regioregularity. J Polym Sci Polym Chem 49:1190–1194

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our gratitude to the Payame Noor University and Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Jaymand.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10008-017-3510-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massoumi, B., Farnoudian-Habibi, A. & Jaymand, M. Chemical and electrochemical grafting of polythiophene onto poly(vinyl chloride): synthesis, characterization, and materials properties. J Solid State Electrochem 20, 489–497 (2016). https://doi.org/10.1007/s10008-015-3070-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3070-x

Keywords

Navigation