Skip to main content
Log in

Significance of Polymeric Nanowire-Network Structures for Stable and Efficient Organic Solar Cells

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Evolution of favourable nanomorphology which can withstand external stimuli is a critical issue for efficient and stable organic solar cells. Here, we demonstrate a novel strategy for the stabilization of nanomorphology of organic solar cells by inducing polymeric nanowire network structures. Thermal annealing of poly(3- hexylthiophene-2,5-diyl) nanowires, highly crystalline, 1-dimensional structures held together through interchain π-π stacking, led to the formation of nanowire network structures confirmed through small angle neutron scattering measurements. The physically interconnected network structures form robust electron donor domains and impose confinement which suppresses the aggregation of the electron acceptor, [6,6]-phenyl-C61-butylric acid methyl ester. Organic solar cells having the nanowire network structures showed increased power conversion efficiencies and dramatically enhanced thermal stability compared to bulk heterojunction (BHJ) and non-network nanowire-based devices. Furthermore, the performance of the nanowire network-based devices was inversely related to the size of the networks, attesting to the significance of nanoconfined geometry formed within nanowire network structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H.-L. Yip, X. Peng, Y. Cao and Y. Chen, Nat. Photonics, 11, 85 (2016).

    Article  CAS  Google Scholar 

  2. S. Li, L. Ye, W. Zhao, S. Zhang, S. Mukherjee, H. Ade, and J. Hou, Adv. Mater., 28, 9423 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. L. Ye, W. Zhao, S. Li, S. Mukherjee, J. H. Carpenter, O. Awartani, X. Jiao, J. Hou, and H. Ade, Adv. Energy Mater., 7, 1602000 (2017).

    Article  CAS  Google Scholar 

  4. W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, J. Am. Chem. Soc., 139, 7148, (2017).

    Article  CAS  PubMed  Google Scholar 

  5. J. G. G. Yu, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995).

    Article  CAS  Google Scholar 

  6. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett., 78, 841 (2001).

    Article  CAS  Google Scholar 

  7. P. Cheng, C. Yan, T. K. Lau, J. Mai, X. Lu, and X. Zhan, Adv. Mater., 28, 5822 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. P. Cheng, C. Yan, Y. Wu, S. Dai, W. Ma, and X. Zhan, J. Mater. Chem. C, 4, 8086 (2016).

    Article  CAS  Google Scholar 

  9. P. Cheng and X. Zhan, Chem. Soc. Rev., 45, 2544 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Q. Liu, J. Toudert, F. Liu, P. Mantilla-Perez, M. M. Bajo, T. P. Russell, and J. Martorell, Adv. Energy Mater., 7, 1701201 (2017).

    Article  CAS  Google Scholar 

  11. A. Rahmanudin, X. A. Jeanbourquin, S. Hänni, A. Sekar, E. Ripaud, L. Yao, and K. Sivula, J. Mater. Chem. A, 5, 17517 (2017).

    Article  CAS  Google Scholar 

  12. L. Tan, F. Yang, M. R. Kim, P. Li, D. T. Gangadharan, J. Margot, R. Izquierdo, M. Chaker, and D. Ma, ACS Appl. Mater. Interfaces, 9, 26257 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. S. Wang, M. Kappl, I. Liebewirth, M. Muller, K. Kirchhoff, W. Pisula, and K. Mullen, Adv. Mater., 24, 417(2012).

    Article  CAS  PubMed  Google Scholar 

  14. H. A. Um, D. H. Lee, D. U. Heo, D. S. Yang, J. Shin, H. Baik, M. J. Cho, and D. H. Choi, ACS Nano, 9, 5264 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Y. Lee, J. Y. Oh, S. Y. Son, T. Park, and U. Jeong, ACS Appl. Mater. Interfaces, 7, 27694 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. M. Chang, Z. Su, and E. Egap, Macromolecules, 49, 9449 (2016).

    Article  CAS  Google Scholar 

  17. P.-H. Chu, N. Kleinhenz, N. Persson, M. McBride, J. L. Hernandez, B. Fu, G. Zhang, and E. Reichmanis, Chem. Mater., 28, 9099 (2016).

    Article  CAS  Google Scholar 

  18. F. S. K. Hao Xin, Samson A. Jenekhe, J. Am. Chem. Soc., 130, 5424 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. S. B. Jo, W. H. Lee, L. Qiu, and K. Cho, J. Mater. Chem., 22, 4244 (2012).

    Article  CAS  Google Scholar 

  20. D. H. Kim, J. Mei, A. L. Ayzner, K. Schmidt, G. Giri, A. L. Appleton, M. F. Toney, and Z. Bao, Energy Environ. Sci., 7, 1103 (2014).

    Article  CAS  Google Scholar 

  21. J. H. Kim, M. Kim, H. Jinnai, T. J. Shin, H. Kim, J. H. Park, S. B. Jo, and K. Cho, ACS Appl. Mater. Interfaces, 6, 5640 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. J. Lee, S. B. Jo, M. Kim, H. G. Kim, J. Shin, H. Kim, and K. Cho, Adv. Mater., 26, 6706 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. J. Y. Oh, M. Shin, H. W. Lee, Y. J. Lee, H. K. Baik, and U. Jeong, ACS Appl. Mater. Interfaces, 6, 7759 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. M. Kim, J. H. Park, J. H. Kim, J. H. Sung, S. B. Jo, M.-H. Jo, and K. Cho, Adv. Ener. Mater., 5, 1401317 (2015).

    Article  CAS  Google Scholar 

  25. H. Yan, Y. Song, G. R. McKeown, G. D. Scholes, and D. S. Seferos, Adv. Mater., 27, 3484 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. J. Lee, D. H. Sin, B. Moon, J. Shin, H. G. Kim, M. Kim, and K. Cho, Ener. Environ. Sci., 10, 247 (2017).

    Article  CAS  Google Scholar 

  27. T. T. Do, H. S. Hong, Y. E. Ha, C.-Y. Park, and J. H. Kim, Macromol. Res., 23, 177 (2015).

    Article  CAS  Google Scholar 

  28. J. Y. Kim, Y. U. Kim, H. J. Kim, H. A. Um, J. Shin, M. J. Cho, D. H. Choi, Macromol. Res., 24, 980 (2016).

    Article  CAS  Google Scholar 

  29. K. H. Park, Y. An, S. Jung, H. Park, and C. Yang, ACS Nano, 11, 7409 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. F. Machui, S. Langner, X. Zhu, S. Abbott, and C. J. Brabec, Sol. Energ. Mater. Sol. Cells, 100, 138 (2012).

    Article  CAS  Google Scholar 

  31. M. C. Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, Nat. Mater., 7, 158 (2008).

    Article  CAS  Google Scholar 

  32. P. G. Karagiannidis, D. Georgiou, C. Pitsalidis, A. Laskarakis, and S. Logothetidis, Mater. Chem. Phys., 129, 1207 (2011).

    Article  CAS  Google Scholar 

  33. C. J. T. Alexander, L. Ayzner, Sarah H. Tolbert, Benjamin J. Schwartz, J. Phys. Chem. C, 113, 20050 (2009).

    Article  CAS  Google Scholar 

  34. W. T. Choi, J. Song, J. Ko, Y. Jang, T.-H. Kim, Y.-S. Han, J. Lim, C. Lee, and K. Char, J. Polym. Sci., Part B: Polym. Phys., 54, 128 (2016).

    Article  CAS  Google Scholar 

  35. J. Ko, J. Song, H. Yoon, T. Kim, C. Lee, R. Berger, and K. Char, Adv. Mater. Interf., 3, 1600264 (2016).

    Article  CAS  Google Scholar 

  36. Y.-C. Li, K.-B. Chen, H.-L. Chen, C.-S. Hsu, C.-S. Tsao, J.-H. Chen, and S.-A. Chen, Langmuir, 22, 11009 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. C.-Y. Chen, S.-H. Chan, J.-Y. Li, K.-H. Wu, H.-L. Chen, J.-H. Chen, W.-Y. Huang, and S.-A. Chen, Macromolecules, 43, 7305 (2010).

    Article  CAS  Google Scholar 

  38. B. J. Bauer, E. K. Hobbie, and M. L. Becker, Macromolecules, 39, 2637 (2006).

    Article  CAS  Google Scholar 

  39. L. A. Hough, M. F. Islam, B. Hammouda, A. G. Yodh, and P. A. Heiney, Nano Lett., 6, 313 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. A. Urbina, C. Miguel, J. L. Delgado, F. Langa, C. Díaz-Paniagua, and F. Batallán, Phys. Rev. B, 78, 045420 (2008).

    Article  CAS  Google Scholar 

  41. J. W. Kiel, A. P. Eberle, and M. E. Mackay, Phys. Rev. Lett., 105, 168701 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. J. W. Kiel, M. E. Mackay, B. J. Kirby, B. B. Maranville, and C. F. Majkrzak, J. Chem. Phys., 133, 074902 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeewoo Lim, Changhee Lee or Kookheon Char.

Additional information

Acknowledgments: This work was supported by National Creative Research Initiative Center for Intelligent Hybrids (No. 2010-0018290) funded by the National Research Foundation of Korea (NRF), and the BK21 Plus Program funded by the Ministry of Education, Science, and Technology (MEST) of Korea. This work was also supported by the Mid-career Researcher Program (2016R1A2B3009301) funded by the NRF and the Technology Innovation Program (or Industrial Strategic Technology Development Program) (No.10077471) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, J., Song, J., Choi, W.T. et al. Significance of Polymeric Nanowire-Network Structures for Stable and Efficient Organic Solar Cells. Macromol. Res. 26, 623–629 (2018). https://doi.org/10.1007/s13233-018-6088-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6088-y

Keywords

Navigation