Skip to main content

One-Dimensional Nano-structured Solar Cells

  • Chapter
  • First Online:
Low-Dimensional and Nanostructured Materials and Devices

Part of the book series: NanoScience and Technology ((NANO))

  • 2442 Accesses

Abstract

The solar light harvesting has long been regarded as promising way to meet the increasing world’s annual energy consumption as well as the solution to prevent the detrimental long-term effect of carbon-monoxide emission released by fossil fuel sources. Due to the high cost of today’s conventional PV technology, however, it is not possible to compete with the energy supplied from fossil fuel sources. The use of one-dimensional nanostructures, including nanowires (NWs), nanorods (NRs), nanopillars (NPs) and nanotubes (NTs) in solar cells with different device architectures (e.g. axial, radial, and nanorod/nanowire array embedded in a thin film) provides peculiar and fascinating advantages over single-crystalline and thin film based solar cells in terms of power conversion efficiency and manufacturing cost due to their large surface/interface area, the ability to grow single-crystalline nanowires on inexpensive substrates without resorting to complex epitaxial routes, single-crystalline structure and light trapping function. In this chapter, we review the recent studies conducted on nanowire/nanorod arrays based solar cells with different device architectures for the realization of high-efficiency solar cells at an economically viable cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Energy BSRoW, Technical Report, BP (2010)

    Google Scholar 

  2. P. Würfel, Frontmatter. Physics of solar cells (Wiley-VCH Verlag GmbH, 2007), pp. I–XII. doi:10.1002/9783527618545.fmatter

  3. J.S. Li, H.Y. Yu, Y.L. Li, Aligned Si nanowire-based solar cells. Nanoscale 3(12), 4888–4900 (2011)

    Google Scholar 

  4. Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003)

    Google Scholar 

  5. Z.Y. Fan, D.J. Ruebusch, A.A. Rathore, R. Kapadia, O. Ergen, P.W. Leu, A. Javey, Challenges and prospects of nanopillar-based solar cells. Nano Res 2(11), 829–843 (2009)

    Google Scholar 

  6. P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111(7), 2834–2860 (2007)

    Google Scholar 

  7. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455–459 (2005)

    Google Scholar 

  8. J.A. Czaban, D.A. Thompson, R.R. LaPierre, GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 9(1), 148–154 (2009)

    Google Scholar 

  9. E.C. Garnett, P.D. Yang, Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130(29), 9224–9225 (2008)

    Google Scholar 

  10. E.C. Garnett, M.L. Brongersma, Y. Cui, M.D. McGehee, Nanowire solar cells. Annu. Rev. Mater. Res. 41, 269–295 (2011)

    Google Scholar 

  11. R. Kapadia, Z.Y. Fan, K. Takei, A. Javey, Nanopillar photovoltaics: materials, processes, and devices. Nano Energy 1(1), 132–144 (2012)

    Google Scholar 

  12. Three-Dimensional Nano Architectures: Designing Next Generation Devices (Springer, New York, London, 2011). doi:10.1007/978-1-4419-9822-4

  13. B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–890 (2007)

    Google Scholar 

  14. Y. Zhang, L.W. Wang, A. Mascarenhas, Quantum coaxial cables for solar energy harvesting. Nano Lett. 7(5), 1264–1269 (2007)

    Google Scholar 

  15. B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97(11), 114302–114313 (2005)

    Google Scholar 

  16. L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl Phys Lett 91(23) (2007)

    Google Scholar 

  17. B.D. Yuhas, P.D. Yang, Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 131(10), 3756–3761 (2009)

    Google Scholar 

  18. Z.Y. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, A. Javey, Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8(8), 648–653 (2009)

    Google Scholar 

  19. R.R. LaPierre, Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells. J. Appl. Phys. 109(3), 034311–034316 (2011)

    Google Scholar 

  20. C. Colombo, M. Heiss, M. Gratzel, A.F.I. Morral, Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 94(17), 173108 (2009)

    Google Scholar 

  21. Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, Vertically aligned p-type single-crystalline gan nanorod arrays on n-type si for heterojunction photovoltaic cells. Nano Lett. 8(12), 4191–4195 (2008)

    Google Scholar 

  22. V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett. 9(4), 1549–1554 (2009)

    Google Scholar 

  23. M.Q. Yao, N.F. Huang, S. Cong, C.Y. Chi, M.A. Seyedi, Y.T. Lin, Y. Cao, M.L. Povinelli, P.D. Dapkus, C.W. Zhou, GaAs nanowire array solar cells with axial p-i-n junctions. Nano Lett. 14(6), 3293–3303 (2014)

    Google Scholar 

  24. A. Mews, Nanomaterials handbook. edited by Yury Gogotsi. Angew. Chem. Int. Ed. 46(13), 2143 (2007). doi:10.1002/anie.200685445

    Article  Google Scholar 

  25. L.N. Dem’yanets, L.E. Li, T.G. Uvarova, Zinc oxide: hydrothermal growth of nano- and bulk crystals and their luminescent properties. J. Mater. Sci. 41(5), 1439–1444 (2006). doi:10.1007/s10853-006-7457-z

    Article  Google Scholar 

  26. H.-E. Wang, Z. Chen, Y.H. Leung, C. Luan, C. Liu, Y. Tang, C. Yan, W. Zhang, J.A. Zapien, I. Bello, S.-T. Lee, Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates. Appl. Phys. Lett. 96(26), 263104 (2010). doi:10.1063/1.3442913

    Article  Google Scholar 

  27. X. Wang, Y. Li, Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124(12), 2880–2881 (2002). doi:10.1021/ja0177105

    Article  Google Scholar 

  28. H. Zhitao, L. Sisi, C. Jinkui, C. Yong, Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method. J. Semiconduct. 34(6), 063002 (2013)

    Google Scholar 

  29. M. Ahmad, M.A. Iqbal, J. Kiely, R. Luxton, M. Jabeen, Low temperature hydrothermal synthesis of ZnO nanowires for nanogenerator: effect of gold electrode on the output voltage of nanogenerator. Indian J. Eng. Mater. S 21(6), 672–676 (2014)

    Google Scholar 

  30. S.N. Bai, S.C. Wu, Synthesis of ZnO nanowires by the hydrothermal method, using sol-gel prepared ZnO seed films. J. Mater. Sci-Mater El 22(4), 339–344 (2011)

    Google Scholar 

  31. R. Hao, X. Deng, Y.B. Yang, D.Y. Chen, Research progress in preparation and applications of ZnO nanowire/rod arrays by hydrothermal method. Acta Chim. Sinica 72(12), 1199–1208 (2014)

    Google Scholar 

  32. H.S. Jang, B. Son, H. Song, G.Y. Jung, H.C. Ko, Controlled hydrothermal growth of multi-length-scale ZnO nanowires using liquid masking layers. J. Mater. Sci. 49(23), 8000–8009 (2014)

    Google Scholar 

  33. H. Karaagac, M. Parlak, E. Yengel, M.S. Islam, Heterojunction solar cells with integrated Si and ZnO nanowires and a chalcopyrite thin film. Mater. Chem. Phys. 140(1), 382–390 (2013)

    Google Scholar 

  34. D.P. Neveling, T.S. van den Heever, R. Bucher, W.J. Perold, L.M.T. Dicks, Effect of seed layer deposition, au film layer thickness and crystal orientation on the synthesis of hydrothermally grown ZnO nanowires. Curr. Nanosci. 10(6), 827–836 (2014)

    Google Scholar 

  35. I.J. No, S. Lee, S.H. Kim, J.W. Cho, P.K. Shin, Morphology control of ZnO nanowires grown by hydrothermal methods using Au nanodots on Al doped ZnO seed layer. Jpn. J. Appl. Phys. 52(2), 025003 (2013)

    Google Scholar 

  36. Y.K. Tseng, M.C. Hung, S.L. Su, S.K. Li, Using the hydrothermal method to grow p-type ZnO nanowires on Al-doped ZnO thin film to fabricate a homojunction diode. J. Nanosci. Nanotechnol. 14(10), 7907–7910 (2014)

    Google Scholar 

  37. H. Karaagac, V.J. Logeeswaran, M.S. Islam, Fabrication of 3D-silicon micropillars/walls decorated with aluminum-ZnO/ZnO nanowires for optoelectric devices. Phys. Status Solidi A 210(7), 1377–1380 (2013)

    Google Scholar 

  38. K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, J. Zhu, Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1(11), 1062–1067 (2005). doi:10.1002/smll.200500137

    Article  Google Scholar 

  39. K.J. Morton, G. Nieberg, S.F. Bai, S.Y. Chou, Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching. Nanotechnology 19(34), 345301 (2008)

    Google Scholar 

  40. Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele, Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23(2), 285–308 (2011). doi:10.1002/adma.201001784

    Article  Google Scholar 

  41. H. Karaagac, M.S. Islam, Enhanced field ionization enabled by metal induced surface states on semiconductor nanotips. Adv. Funct. Mater. 24(15), 2224–2232 (2014)

    Google Scholar 

  42. M. Meyyappan MS, Inorganic Nanowires: Applications, Properties and Characterization. (CRC Press, 2010)

    Google Scholar 

  43. B. Gates, B. Mayers, A. Grossman, Y. Xia, A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports. Adv. Mater. 14(23), 1749–1752 (2002)

    Google Scholar 

  44. R.V. Kumar, Y. Koltypin, X.N. Xu, Y. Yeshurun, A. Gedanken, I. Felner, Fabrication of magnetite nanorods by ultrasound irradiation. J. Appl. Phys. 89(11), 6324–6328 (2001)

    Google Scholar 

  45. A.P. Nayak, A.M. Katzenmeyer, J.-Y. Kim, M.K. Kwon, Y. Gosho, M. Saif Islam, Purely sonochemical route for oriented zinc oxide nanowire growth on arbitrary substrate. Proc. SPIE 7683, 738312. doi:10.1117/12.851755  

  46. Y.Y. Wu, P.D. Yang, Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123(13), 3165–3166 (2001)

    Google Scholar 

  47. M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001)

    Google Scholar 

  48. W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys. 39(21), R387–R406 (2006)

    Google Scholar 

  49. S. Han, R.S. Wagner, Grain boundary effects on carrier transport in undoped polycrystalline chemical-vapor-deposited diamond. Appl. Phys. Lett. 68(21), 3016–3018 (1996)

    Google Scholar 

  50. C.C. Chen, C.C. Yeh, Large-scale catalytic synthesis of crystalline gallium nitride nanowires. Adv. Mater. 12(10), 738 (2000)

    Google Scholar 

  51. Y.J. Chen, J.B. Li, Y.S. Han, X.Z. Yang, J.H. Dai, The effect of Mg vapor source on the formation of MgO whiskers and sheets. J. Cryst. Growth 245(1–2), 163–170 (2002)

    Google Scholar 

  52. X.F. Duan, C.M. Lieber, General synthesis of compound semiconductor nanowires. Adv. Mater. 12(4), 298–302 (2000)

    Google Scholar 

  53. Y.W. Wang, L.D. Zhang, C.H. Liang, G.Z. Wang, X.S. Peng, Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chem. Phys. Lett. 357(3–4), 314–318 (2002)

    Google Scholar 

  54. J. Zhang, X.S. Peng, X.F. Wang, Y.W. Wang, L.D. Zhang, Micro-Raman investigation of GaN nanowires prepared by direct reaction Ga with NH3. Chem. Phys. Lett. 345(5–6), 372–376 (2001). doi:10.1016/S0009-2614(01)00905-8

    Article  Google Scholar 

  55. M. Triplett, H. Nishimura, M. Ombaba, V.J. Logeeswarren, M. Yee, K.G. Polat, J.Y. Oh, T. Fuyuki, F. Leonard, M.S. Islam, High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication. Nano Res. 7(7), 998–1006 (2014)

    Google Scholar 

  56. C.N.R. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires. Prog. Solid State Ch 31(1–2), 5–147 (2003)

    Google Scholar 

  57. P.L. Dong, X.D. Wang, M. Zhang, M. Guo, S. Seetharaman, The preparation and characterization of beta-SiAlON nanostructure whiskers. J. Nanomater. 2008, 282187–282192 (2008)

    Google Scholar 

  58. Y.J. Hsu, S.Y. Lu, Vapor-solid growth of Sn nanowires: growth mechanism and superconductivity. J. Phys. Chem. B 109(10), 4398–4403 (2005)

    Google Scholar 

  59. Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291(5510), 1947–1949 (2001)

    Google Scholar 

  60. Y.J. Zhang, N.L. Wang, S.P. Gao, R.R. He, S. Miao, J. Liu, J. Zhu, X. Zhang, A simple method to synthesize nanowires. Chem. Mater. 14(8), 3564–3568 (2002)

    Google Scholar 

  61. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)

    Google Scholar 

  62. S. Sakurai, M. Inaguma, D.N. Futaba, M. Yumura, K. Hata, A fundamental limitation of small diameter single-walled carbon nanotube synthesis-a scaling rule of the carbon nanotube yield with catalyst volume. Materials 6(7), 2633–2641 (2013)

    Google Scholar 

  63. M. Xu, D.N. Futaba, M. Yumura, K. Hata, Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect. ACS Nano 6(7), 5837–5844 (2012)

    Google Scholar 

  64. H. Karaagac, M. Kaleli, M. Parlak, Characterization of AgGa0.5In0.5Se2 thin films deposited by electron-beam technique. J. Phys. D-Appl. Phys. 42(16) (2009). doi:Artn 165413; doi:10.1088/0022-3727/42/16/165413

  65. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, 19.9 %-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2 % fill factor. Prog. Photovolt. 16(3), 235–239 (2008). doi:10.1002/Pip.822

    Article  Google Scholar 

  66. K. Yamada, N. Hoshino, T. Nakada, Crystallographic and electrical properties of wide gap Ag(In1-x, Ga-x)Se-2 thin films and solar cells. Sci. Technol. Adv. Mat. 7(1), 42–45 (2006). doi:10.1016/j.stam.2005.11.016

    Article  Google Scholar 

  67. P.P. Ramesh, O.M. Hussain, S. Uthanna, B.S. Naidu, P.J. Reddy, Photovoltaic performance of p-AgInSe2/n-CdS thin film heterojunctions. Mater. Lett. 34(3–6), 217–221 (1998)

    Google Scholar 

  68. Y.S. Murthy, O.M. Hussain, B.S. Naidu, P.J. Reddy, Characterization of P-Aggase2/N-Cds thin-film heterojunction. Mater. Lett. 10(11–12), 504–508 (1991)

    Google Scholar 

  69. G.H. Chandra, O.M. Hussain, S. Uthanna, B.S. Naidu, Characterization of p-AgGa0.25In0.75Se2/n-Zn0.35Cd0.65S polycrystalline thin film heterojunctions. Mat. Sci. Eng. B-Solid 86(1), 60–63 (2001)

    Google Scholar 

  70. B. Ozdemir, M. Kulakci, R. Turan, H.E. Unalan, Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22(15), 155606 (2011). doi:Artn 155606; doi:10.1088/0957-4484/22/15/155606

  71. K.Q. Peng, J.J. Hu, Y.J. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, J. Zhu, Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 16(3), 387–394 (2006). doi:10.1002/adfm.200500392

    Article  Google Scholar 

  72. O. Gunawan, S. Guha, Characteristics of vapor-liquid-solid grown silicon nanowire solar cells. Sol. Energy Mat. Sol. C 93(8), 1388–1393 (2009). doi:10.1016/j.solmat.2009.02.024

    Article  Google Scholar 

  73. D.R. Kim, C.H. Lee, P.M. Rao, I.S. Cho, X.L. Zheng, Hybrid Si microwire and planar solar cells: passivation and characterization. Nano Lett. 11(7), 2704–2708 (2011). doi:10.1021/Nl2009636

    Article  Google Scholar 

  74. V.J. Logeeswaran, A.M. Katzenmeyer, M.S. Islam, Harvesting and transferring vertical pillar arrays of single-crystal semiconductor devices to arbitrary substrates. IEEE T Electron. Dev. 57(8), 1856–1864 (2010). doi:10.1109/Ted.2010.2051195

    Article  Google Scholar 

  75. M.M. Ombaba, L.V. Jayaraman, M.S. Islam, Precision stress localization during mechanical harvesting of vertically oriented semiconductor micro- and nanostructure arrays. Appl. Phys. Lett. 104(24), 243109 (2014)

    Google Scholar 

  76. H. Bi, R.R. LaPierre, A GaAs nanowire/P3HT hybrid photovoltaic device. Nanotechnology 20(46), 465205 (2009). doi:Artn 465205; doi:10.1088/0957-4484/20/46/465205

  77. J. Davenas, S.B. Dkhil, D. Cornu, A. Rybak, Silicon nanowire/P3HT hybrid solar cells: effect of the electron localization at wire nanodiameters. Energy Proc. 31, 136–143 (2012). doi:10.1016/j.egypro.2012.11.175

    Article  Google Scholar 

  78. B. Eisenhawer, S. Sensfuss, V. Sivakov, M. Pietsch, G. Andra, F. Falk, Increasing the efficiency of polymer solar cells by silicon nanowires. Nanotechnology 22(31), 315401 (2011). doi:Artn 315401; doi:10.1088/0957-4484/22/31/315401

  79. L.N. He, C.Y. Jiang, H. Wang, D. Lai, Rusli, Si nanowires organic semiconductor hybrid heterojunction solar cells toward 10 % efficiency. ACS Appl. Mater. Inter. 4(3), 1704–1708 (2012). doi:10.1021/Am201838y

    Article  Google Scholar 

  80. Y. Kang, D. Kim, Well-aligned CdS nanorod conjugated polymer solar cells. Sol. Energy Mat. Sol. C 90(2), 166–174 (2006). doi:10.1016/j.solmat.2005.03.001

    Article  Google Scholar 

  81. J.S. Huang, C.Y. Hsiao, S.J. Syu, J.J. Chao, C.F. Lin, Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass. Sol. Energy Mat. Sol. C 93(5), 621–624 (2009). doi:10.1016/j.solmat.2008.12.016

    Article  Google Scholar 

  82. H. Karaagac, A hybrid solar cell based on silicon nanowire and organic thin film. Physica Status solidi (a) 211(11), 2503–2508 (2014). doi:10.1002/pssa.201431320

    Article  Google Scholar 

  83. G.J. Matt, T. Fromherz, M. Bednorz, S. Zamiri, G. Goncalves, C. Lungenschmied, D. Meissner, H. Sitter, N.S. Sariciftci, C.J. Brabec, G. Bauer, Fullerene sensitized silicon for near-to mid-infrared light detection. Adv. Mater. 22(5), 647 (2010). doi:10.1002/adma.200901383

    Article  Google Scholar 

  84. J. Bae et al., Si nanowire metal–insulator–semiconductor photodetectors as efficient light harvesters. Nanotechnology 21(9), 095502 (2010)

    Google Scholar 

  85. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001). doi:10.1126/science.1062711

    Article  Google Scholar 

  86. T.C.H. Yamada, S. Ishidac, Y. Arakawac, Si-nanowire optical waveguide devices for optical communications. Proc. SPIE 6019, 60192X (2005)

    Google Scholar 

  87. L. Hu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7(11), 3249–3252 (2007). doi:10.1021/nl071018b

    Article  Google Scholar 

  88. L. Liao, H.B. Lu, M. Shuai, J.C. Li, Y.L. Liu, C. Liu, Z.X. Shen, T. Yu, A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability. Nanotechnology 19(17), 175501 (2008). doi:Artn 175501; doi:10.1088/0957-4484/19/17/175501

  89. F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5(11), 2287–2291 (2005). doi:10.1021/nl051689e

    Article  Google Scholar 

  90. V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gösele, Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2(1), 85–88 (2006). doi:10.1002/smll.200500181

    Article  Google Scholar 

  91. P.D. Li, C.M. Sun, T.G. Jiu, G.J. Wang, J. Li, X.F. Li, J.F. Fangt, High-performance inverted solar cells based on blend films of ZnO naoparticles and TiO2 nanorods as a cathode buffer layer. ACS Appl. Mater. Inter. 6(6), 4074–4080 (2014)

    Google Scholar 

  92. J.P. Liu, S.S. Wang, Z.Q. Bian, M. Shan, C.H. Huang, Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires. Appl. Phys. Lett. 94(17), 173107 (2009)

    Google Scholar 

  93. O. Lupan, V.M. Guerin, I.M. Tiginyanu, V.V. Ursaki, L. Chow, H. Heinrich, T. Pauporte, Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells. J. Photoch. Photobio A 211(1), 65–73 (2010)

    Google Scholar 

  94. V. Strano, E. Smecca, V. Depauw, C. Trompoukis, A. Alberti, R. Reitano, I. Crupi, I. Gordon, S. Mirabella, Low-cost high-haze films based on ZnO nanorods for light scattering in thin c-Si solar cells. Appl. Phys. Lett. 106(1), 013901 (2015)

    Google Scholar 

  95. D.I. Suh, S.Y. Lee, T.H. Kim, J.M. Chun, E.K. Suh, O.B. Yang, S.K. Lee, The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires. Chem. Phys. Lett. 442(4–6), 348–353 (2007)

    Google Scholar 

  96. M.T. Tsai, Z.P. Yang, T.S. Jing, H.H. Hsieh, Y.C. Yao, T.Y. Lin, Y.F. Chen, Y.J. Lee, Achieving graded refractive index by use of ZnO nanorods/TiO2 layer to enhance omnidirectional photovoltaic performances of InGaP/GaAs/Ge triple-junction solar cells. Sol. Energy Mat. Sol C 136, 17–24 (2015)

    Google Scholar 

  97. J. Zhang, W.X. Que, P. Zhong, G.Q. Zhu, p-Cu2O/n-ZnO nanowires on ITO glass for solar cells. J. Nanosci. Nanotechnol. 10(11), 7473–7476 (2010)

    Google Scholar 

  98. Y.F. Zhu, W.Z. Shen, Synthesis of ZnO nanoplates decorated rhombus-shaped ZnO nanorods and their application in solar cells. Physica E 59, 110–116 (2014)

    Google Scholar 

  99. L.W. Ji, S.M. Peng, J.S. Wu, W.S. Shih, C.Z. Wu, I.T. Tang, Effect of seed layer on the growth of well-aligned ZnO nanowires. J. Phys. Chem. Solids 70(10), 1359–1362 (2009). doi:10.1016/j.jpcs.2009.07.029

    Article  Google Scholar 

  100. L. De Marco, M. Manca, R. Giannuzzi, F. Malara, G. Melcarne, G. Ciccarella, I. Zama, R. Cingolani, G. Gigli, Novel preparation method of TiO2-nanorod-based photoelectrodes for dye-sensitized solar cells with improved light-harvesting efficiency. J. Phys. Chem. C 114(9), 4228–4236 (2010). doi:10.1021/Jp910346d

    Article  Google Scholar 

  101. I.S. Cho, Z.B. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X.L. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11(11), 4978–4984 (2011). doi:10.1021/Nl2029392

    Article  Google Scholar 

  102. J.B. Chen, C.W. Wang, Y.M. Kang, D.S. Li, W.D. Zhu, F. Zhou, Investigation of temperature-dependent field emission from single crystal TiO2 nanorods. Appl. Surf. Sci. 258(20), 8279–8282 (2012). doi:10.1016/j.apsusc.2012.05.037

    Article  Google Scholar 

  103. H.W. Lin, Y.H. Chang, C. Chen, Facile fabrication of TiO2 nanorod arrays for gas sensing using double-layered anodic oxidation method. J. Electrochem. Soc. 159(1), K5–K9 (2012). doi:10.1149/2.013201jes

    Article  Google Scholar 

  104. J.K. Chen, W.Y. Fu, G.Y. Yuan, A. Runa, H. Bala, X.D. Wang, G. Sun, J.L. Cao, Z.Y. Zhang, Fabrication of TiO2 nanocrystals/nanorods composites thin film electrode: Enhanced performance of dye-sensitized solar cells. Mater. Lett. 135, 229–232 (2014)

    Google Scholar 

  105. K. Fan, W. Zhang, T.Y. Peng, J.N. Chen, F. Yang, Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency. J. Phys. Chem. C 115(34), 17213–17219 (2011)

    Google Scholar 

  106. Z.M. He, J. Liu, J.W. Miao, B. Liu, T.T.Y. Tan, A one-pot solvothermal synthesis of hierarchical microspheres with radially assembled single-crystalline TiO2-nanorods for high performance dye-sensitized solar cells. J. Mater. Chem. C 2(8), 1381–1385 (2014)

    Google Scholar 

  107. Y.H. Jung, K.H. Park, J.S. Oh, D.H. Kim, C.K. Hong, Effect of TiO2 rutile nanorods on the photoelectrodes of dye-sensitized solar cells. Nanoscale Res. Lett. 8, 37 (2013)

    Google Scholar 

  108. S.H. Kang, Thickness effect of single crystalline TiO2 nanorods for dye-sensitized solar cells. J. Nanosci. Nanotechnol. 14(8), 6318–6321 (2014)

    Google Scholar 

  109. S. Kathirvel, C.C. Su, H.C. Lin, B.R. Chen, W.R. Li, Facile non-hydrolytic solvothermal synthesis of one dimensional TiO2 nanorods for efficient dye-sensitized solar cells. Mater. Lett. 129, 149–152 (2014)

    Google Scholar 

  110. P.L. Kuo, T.S. Jan, C.H. Liao, C.C. Chen, K.M. Lee, Syntheses of size-varied nanorods TiO2 and blending effects on efficiency for dye-sensitized solar cells. J. Power Sources 235, 297–302 (2013)

    Google Scholar 

  111. J. Liu, J. Luo, W.G. Yang, Y.L. Wang, L.Y. Zhu, Y.Y. Xu, Y. Tang, Y.J. Hu, C. Wang, Y.G. Chen, W.M. Shi, Synthesis of single-crystalline anatase TiO2 nanorods with high-performance dye-sensitized solar cells. J. Mater. Sci. Technol. 31(1), 106–109 (2015)

    Google Scholar 

  112. Y.D. Park, K. Anabuki, S. Kim, K.W. Park, D.H. Lee, S.H. Um, J. Kim, J.H. Cho, Fabrication of stable electrospun TiO2 nanorods for high-performance dye-sensitized solar cells. Macromol. Res. 21(6), 636–640 (2013)

    Google Scholar 

  113. M.K. Wang, J. Bai, F. Le Formal, S.J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Gratzel, S.M. Zakeeruddin, M. Gratzel, Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes. J. Phys. Chem. C 116(5), 3266–3273 (2012)

    Google Scholar 

  114. Y.L. Xie, P.C. Lin, S.Q. Hu, Y.C. Lu, L. Li, H. Wang, Growth of ZnO nanorods on TiO2 nanoparticles films and their application to the electrode of dye-sensitized solar cells. J. Mater. Sci-Mater El 25(6), 2665–2670 (2014)

    Google Scholar 

  115. W.J. Zhang, Y. Xie, D.H. Xiong, X.W. Zeng, Z.H. Li, M.K. Wang, Y.B. Cheng, W. Chen, K.Y. Yan, S.H. Yang, TiO2 nanorods: a facile size- and shape-tunable synthesis and effective improvement of charge collection kinetics for dye-sensitized solar cells. ACS Appl. Mater. Inter. 6(12), 9698–9704 (2014)

    Google Scholar 

  116. B.W. Luo, Y. Deng, Y. Wang, Z.W. Zhang, M. Tan, Heterogeneous flammulina velutipes-like CdTe/TiO2 nanorod array: A promising composite nanostructure for solar cell application. J. Alloy. Compd. 517, 192–197 (2012). doi:10.1016/j.jallcom.2011.12.090

    Article  Google Scholar 

  117. H.B. Zhang, M.J. Zhang, C.B. Tian, N. Li, P. Lin, Z.H. Li, S.W. Du, An effective method for the synthesis of 3D inorganic Ln(III)-K(I) sulfate open frameworks with unusually high thermal stability: in situ generation of sulfate anions. J. Mater. Chem. 22(14), 6831–6837 (2012). doi:10.1039/C2jm16779d

    Article  Google Scholar 

  118. M. Ghaffari, M.B. Cosar, H.I. Yavuz, M. Ozenbas, A.K. Okyay, Effect of Au nano-particles on TiO2 nanorod electrode in dye-sensitized solar cells. Electrochim. Acta 76, 446–452 (2012). doi:10.1016/j.electacta.2012.05.058

    Article  Google Scholar 

  119. H. Karaagac, L.E. Aygun, M. Parlak, M. Ghaffari, N. Biyikli, A.K. Okyay, Au/TiO2 nanorod-based schottky-type UV photodetectors. Phys. Status Solidi-R 6(11), 442–444 (2012). doi:10.1002/pssr.201206379

    Article  Google Scholar 

  120. J. Tang, Z. Huo, S. Brittman, H. Gao, P. Yang, Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nano 6(9), 568–572 (2011)

    Google Scholar 

  121. Y. Tak, S.J. Hong, J.S. Lee, K. Yong, Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 19(33), 5945–5951 (2009). doi:10.1039/B904993B

    Article  Google Scholar 

  122. L.E. Greene, M. Law, B.D. Yuhas, P. Yang, ZnO−TiO2 core−shell nanorod/P3HT solar cells. J. Phys. Chem. C 111(50), 18451–18456 (2007). doi:10.1021/jp077593l

    Article  Google Scholar 

  123. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889 (2007)

    Google Scholar 

  124. G. Jia, M. Steglich, I. Sill, F. Falk, Core–shell heterojunction solar cells on silicon nanowire arrays. Sol Energy Mat. Sol. C 96, 226–230 (2012). doi:10.1016/j.solmat.2011.09.062

    Article  Google Scholar 

  125. M.M. Adachi, M.P. Anantram, K.S. Karim, Core-shell silicon nanowire solar cells. Sci. Rep. 3 (2013). doi:http://www.nature.com/srep/2013/130326/srep01546/abs/srep01546.html#supplementary-information

  126. X. Zhao, P. Wang, Y. Gao, X. Xu, Z. Yan, N. Ren, CuO/ZnO core/shell nanowire arrays and their photovoltaics application. Mater. Lett. 132, 409–412 (2014). doi:10.1016/j.matlet.2014.06.124

    Article  Google Scholar 

  127. B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97(11), 114302 (2005). doi:10.1063/1.1901835

    Article  Google Scholar 

  128. S.E. Han, G. Chen, Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 10(3), 1012–1015 (2010). doi:10.1021/nl904187m

    Article  Google Scholar 

  129. L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, M.C. Lux-Steiner, ZnO nanorod arrays as an antireflective coating for Cu(In, Ga)Se2 thin film solar cells. Prog. Photovoltaics Res. Appl. 18(3), 209–213 (2010). doi:10.1002/pip.946

    Article  Google Scholar 

  130. T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, S. Christiansen, Silicon nanowire-based solar cells. Nanotechnology 19(29), 295203 (2008)

    Google Scholar 

  131. S.A. Moiz, A.M. Nahhas, H.D. Um, S.W. Jee, H.K. Cho, S.W. Kim, J.H. Lee, A stamped PEDOT:PSS-silicon nanowire hybrid solar cell. Nanotechnology 23(14), 145401 (2012)

    Google Scholar 

  132. A. Kim, Y. Won, K. Woo, C.-H. Kim, J. Moon, Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7(2), 1081–1091 (2013). doi:10.1021/nn305491x

    Article  Google Scholar 

  133. S. Cataldo, P. Salice, E. Menna, B. Pignataro, Carbon nanotubes and organic solar cells. Energy Environ. Sci. 5(3), 5919–5940 (2012)

    Google Scholar 

  134. P.-L. Ong, W.B. Euler, I.A. Levitsky, Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Nanotechnology 21(10), 105203 (2010)

    Google Scholar 

  135. M.S. Dresselhaus GD, P. Avouris, Carbon Nanotubes: Synthesis, Properties and Applications, vol. 80 (Springer, Berlin, 2001). doi:10.1007/3-540-39947-X

  136. P.X. Hou, C. Liu, H.M. Cheng, Purification of carbon nanotubes. Carbon 46(15), 2003–2025 (2008)

    Google Scholar 

  137. L.A. Montoro, J.M. Rosolen, A multi-step treatment to effective purification of single-walled carbon nanotubes. Carbon 44(15), 3293–3301 (2006)

    Google Scholar 

  138. C.M. Aguirre, S. Auvray, S. Pigeon, R. Izquierdo, P. Desjardins, R. Martel, Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl. Phys. Lett. 88(18) (2006)

    Google Scholar 

  139. D.H. Zhang, K. Ryu, X.L. Liu, E. Polikarpov, J. Ly, M.E. Tompson, C.W. Zhou, Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 6(9), 1880–1886 (2006)

    Google Scholar 

  140. B.B. Parekh, G. Fanchini, G. Eda, M. Chhowalla, Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Appl. Phys. Lett. 90(12), 121913 (2007)

    Google Scholar 

  141. T. Tanaka, Y. Urabe, D. Nishide, H. Kataura, Discovery of surfactants for metal/semiconductor separation of single-wall carbon nanotubes via high-throughput screening. J. Am. Chem. Soc. 133(44), 17610–17613 (2011)

    Google Scholar 

  142. P. Havu, M.J. Hashemi, M. Kaukonen, E.T. Seppälä, R.M. Nieminen, Effect of gating and pressure on the electronic transport properties of crossed nanotube junctions: formation of a Schottky barrier. J. Phys.: Condens. Matter 23(11), 112203 (2011)

    Google Scholar 

  143. Y. Jung, X.K. Li, N.K. Rajan, A.D. Tayor, M.A. Reed, Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett. 13(1), 95–99 (2013)

    Google Scholar 

  144. F. Hennrich, R. Wellmann, S. Malik, S. Lebedkin, M.M. Kappes, Reversible modification of the absorption properties of single-walled carbon nanotube thin films via nitric acid exposure. Phys. Chem. Chem. Phys. 5(1), 178–183 (2003)

    Google Scholar 

  145. R. Jackson, B. Domercq, R. Jain, B. Kippelen, S. Graham, Stability of doped transparent carbon nanotube electrodes. Adv. Funct. Mater. 18(17), 2548–2554 (2008)

    Google Scholar 

  146. S.L. Hellstrom, M. Vosgueritchian, R.M. Stoltenberg, I. Irfan, M. Hammock, Y.B. Wang, C.C. Jia, X.F. Guo, Y.L. Gao, Z.N. Bao, Strong and stable doping of carbon nanotubes and graphene by MoOx for transparent electrodes. Nano Lett. 12(7), 3574–3580 (2012)

    Google Scholar 

  147. H.-Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang, Y.H. Lee, Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129(25), 7758–7759 (2007). doi:10.1021/ja0722224

    Article  Google Scholar 

  148. S. Kim, J. Yim, X. Wang, D.D.C. Bradley, S. Lee, J.C. Demello, Spin- and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells. Adv. Funct. Mater. 20(14), 2310–2316 (2010)

    Google Scholar 

  149. M.S. Strano, V.C. Moore, M.K. Miller, M.J. Allen, E.H. Haroz, C. Kittrell, R.H. Hauge, R.E. Smalley, The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3(1–2), 81–86 (2003)

    Google Scholar 

  150. H. Cebeci, R.G. de Villoria, A.J. Hart, B.L. Wardle, Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Compos. Sci. Technol. 69(15–16), 2649–2656 (2009)

    Google Scholar 

  151. A. Hagfeldt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95(1), 49–68 (1995)

    Google Scholar 

  152. CCISolar, Dye sensitized solar cell—DSCC (2015). http://www.ccisolar.caltech.edu/index.php?module=webpage&id=113&page=3

  153. A.C. Fisher, L.M. Peter, E.A. Ponomarev, A.B. Walker, K.G.U. Wijayantha, Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells. J. Phys. Chem. B 104(5), 949–958 (2000)

    Google Scholar 

  154. T. Oekermann, D. Zhang, T. Yoshida, H. Minoura, Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J. Phys. Chem. B 108(7), 2227–2235 (2004)

    Google Scholar 

  155. R.C. Nelson, Energy transfers between sensitizer and substrate. III. sensitization by thick dye films. J. Opt. Soc. Am. 51(11), 1182–1186 (1961). doi:10.1364/JOSA.51.001182

    Article  Google Scholar 

  156. J. van de Lagemaat, A.J. Frank, Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J. Phys. Chem. B 105(45), 11194–11205 (2001). doi:10.1021/jp0118468

    Article  Google Scholar 

  157. T.Y. Lee, P.S. Alegaonkar, J.B. Yoo, Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films 515(12), 5131–5135 (2007)

    Google Scholar 

  158. K.-M. Lee, C.-W. Hu, H.-W. Chen, K.-C. Ho, Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Sol. Energy Mat. Sol. C 92(12), 1628–1633 (2008). doi:10.1016/j.solmat.2008.07.012

    Article  Google Scholar 

  159. K.T. Dembele, G.S. Selopal, C. Soldano, R. Nechache, J.C. Rimada, I. Concina, G. Sberveglieri, F. Rosei, A. Vomiero, Hybrid carbon nanotubes-TiO2 photoanodes for high efficiency dye-sensitized solar cells. J. Phys. Chem. C 117(28), 14510–14517 (2013)

    Google Scholar 

  160. Z. Peining, A.S. Nair, Y. Shengyuan, P. Shengjie, N.K. Elumalai, S. Ramakrishna, Rice grain-shaped TiO2–CNT composite—a functional material with a novel morphology for dye-sensitized solar cells. J. Photochem. Photobiol. A 231(1), 9–18 (2012). doi:10.1016/j.jphotochem.2012.01.002

    Article  Google Scholar 

  161. L.J. Yang, W.W.F. Leung, Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells. Adv. Mater. 25(12), 1792–1795 (2013)

    Google Scholar 

  162. H.S. Wroblowa, A. Saunders, Flow-through electrodes: II. The I3/−/I−redox couple. J. Electroanal. Chem. Interfacial Electrochem. 42(3), 329–346 (1973). doi:10.1016/S0022-0728(73)80323-7

    Article  Google Scholar 

  163. K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett. 32(1), 28–29 (2003). doi:10.1246/cl.2003.28

    Article  Google Scholar 

  164. S. Uk Lee, W. Seok Choi, B. Hong, A comparative study of dye-sensitized solar cells added carbon nanotubes to electrolyte and counter electrodes. Sol. Energy Mat. Sol. C 94(4), 680–685 (2010). doi:10.1016/j.solmat.2009.11.030

    Article  Google Scholar 

  165. S.H. Seo, S.Y. Kim, B.K. Koo, S.I. Cha, D.Y. Lee, Influence of electrolyte composition on the photovoltaic performance and stability of dye-sensitized solar cells with multiwalled carbon nanotube catalysts. Langmuir 26(12), 10341–10346 (2010)

    Google Scholar 

  166. J. Velten, A.J. Mozer, D. Li, D. Officer, G. Wallace, R. Baughman, A. Zakhidov, Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology 23(8), 085201 (2012)

    Google Scholar 

  167. H. Anwar, A.E. George, I.G. Hill, Vertically-aligned carbon nanotube counter electrodes for dye-sensitized solar cells. Sol. Energy 88, 129–136 (2013)

    Google Scholar 

  168. G.-R. Li, F. Wang, Q.-W. Jiang, X.-P. Gao, P.-W. Shen, Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew. Chem. Int. Ed. 49(21), 3653–3656 (2010). doi:10.1002/anie.201000659

    Article  Google Scholar 

  169. Q.W. Jiang, G.R. Li, X.P. Gao, Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chem. Commun. 44, 6720–6722 (2009)

    Google Scholar 

  170. H.-J. Shin, S.S. Jeon, S.S. Im, CNT/PEDOT core/shell nanostructures as a counter electrode for dye-sensitized solar cells. Synthetic Met. 161(13–14), 1284–1288 (2011). doi:10.1016/j.synthmet.2011.04.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Karaağaç .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karaağaç, H., Peksu, E., Arici, E.U., Saif Islam, M. (2016). One-Dimensional Nano-structured Solar Cells. In: Ünlü, H., Horing, N.J.M., Dabrowski, J. (eds) Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25340-4_15

Download citation

Publish with us

Policies and ethics