Skip to main content
Log in

Nucleic Acid-Binding Fluorochromes and Nanoparticles: Structural Aspects of Binding Affinity and Fluorescence Intensity

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This study was conducted to determine the relationship between dye structure, particularly the structural charge and flexibility, and binding affinity. We also investigated the effect of multivalency on the maximum fluorescence intensity by conjugating varying numbers of monovalent fluorochromes on nanoparticles. Fluorochrome-conjugated nanoparticles were synthesized by conjugating N-hydroxysuccinimide ester of quinolinium,4-[(3-methyl-2(3H)-benzothiazolylidene)methyl]- 1-[3-(trimethylammonio)propyl]-,iodide (TO-PRO 1 NHS ester) into aminated nanoparticles. The half maximum effective concentration (EC50) of DNA-binding fluorochromes and fluorochrome-conjugated nanoparticles for double- stranded nucleic acid (dsDNA) was investigated by fluorescence. Two important factors regulating the binding characteristics of fluorochromes were studied: the number of positive charges and the structural flexibility. Positive charge enhancement of binding affinity was observed in various systems. TO-PRO 1, which has two positive charges, showed higher binding affinity than TO. Rigid structured dyes, propidium iodide and 4′,6-diamidino-2-phenylindole (DAPI), exhibited significantly lower maximum fluorescence than TO-PRO 1, even though they both have two positive charges. The dye with three positive charges, SYTOX Green, showed higher binding affinity than TO-PRO 1. TO-PRO 1 dimer (TO-TO), which has four positive charges, showed the highest binding affinity to DNA. Flexible dyes exhibited more than 1000-fold higher fluorescence upon binding to dsDNA. The multivalency of the fluorochromes on the nanoparticles revealed that a shorter distance between fluorochromes was related to higher maximum fluorescence intensity. The fluorescence intensity of multivalent fluorochromes was substantially dependent on the distance between the monovalent sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Dodani, S. C. Leary, P. A. Cobine, D. R. Winge, and C. J. Chang, J. Am. Chem. Soc., 133, 8606 (2011).

    Article  CAS  Google Scholar 

  2. T. J. Liegler, W. Hyun, T. S. Yen, and D. P. Stites, Clin. Diagn. Lab. Immunol., 2, 369 (1995).

    CAS  Google Scholar 

  3. H.-J. Guchelaar, I. Vermes, R. P. Koopmans, C. P. M. Reutelingsperger, and C. Haanen, Cancer Chemother. Pharmacol., 42, 77 (1998).

    Article  CAS  Google Scholar 

  4. L. Galluzzi and G. Kroemer, Cell, 135, 1161 (2008).

    Article  CAS  Google Scholar 

  5. T. V. Berghe, N. Vanlangenakker, E. Parthoens, W. Deckers, M. Devos, N. Festjens, C. J. Guerin, U. T. Brunk, W. Declercq, and P. Vandenabeele, Cell Death Differ., 17, 922 (2010).

    Article  Google Scholar 

  6. I. Lubitz, D. Zikich, and A. Kotlyar, Biochemistry, 49, 3567 (2010).

    Article  CAS  Google Scholar 

  7. S. C. Benson, R. A. Mathies, and A. N. Glazer, Nucleic Acids Res., 21, 5720 (1993).

    Article  CAS  Google Scholar 

  8. H. S. Rye, S. Yue, D. E. Wemmer, M. A. Quesada, R. P. Haugland, R. A. Mathies, and A. N. Glazer, Nucleic Acids Res., 20, 2803 (1992).

    Article  CAS  Google Scholar 

  9. J. B. Wu, C. Shao, X. Li, C. Shi, Q. Li, P. Hu, Y.-T. Chen, X. Dou, D. Sahu, W. Li, H. Harada, Y. Zhang, R. Wang, H. E. Zhau, and L. W. K. Chung, Biomaterials, 35, 8175 (2014).

    Article  CAS  Google Scholar 

  10. A. Hellebust and R. Richards-Kortum, Nanomedicine (Lond), 7, 429 (2012).

    Article  CAS  Google Scholar 

  11. H. Hyun, M. H. Park, E. A. Owens, H. Wada, M. Henary, H. J. M. Handgraaf, A. L. Vahrmeijer, J. V. Frangioni, and H. S. Choi, Nat. Med., 21, 192 (2015).

    Article  CAS  Google Scholar 

  12. X. Yang, C. Shi, R. Tong, W. Qian, H. E. Zhau, R. Wang, G. Zhu, J. Cheng, V. W. Yang, T. Cheng, M. Henary, L. Strekowski, and L. W. Chung, Clin. Cancer Res., 16, 2833 (2010).

    Article  CAS  Google Scholar 

  13. R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, Acc. Chem. Res., 44, 936 (2011).

    Article  CAS  Google Scholar 

  14. H. Zhong, R. Zhang, H. Zhang, and S. Zhang, Chem. Commun. (Camb.), 48, 6277 (2012).

    Article  CAS  Google Scholar 

  15. X. Yi, F. Wang, W. Qin, X. Yang, and J. Yuan, Int. J. Nanomed., 9, 1347 (2014).

    Article  Google Scholar 

  16. H. Gudnason, M. Dufva, D. D. Bang, and A. Wolff, Nucleic Acids Res., 35, e127 (2007).

    Article  Google Scholar 

  17. D. Alcantara, Y. Guo, H. Yuan, C. J. Goergen, H. H. Chen, H. Cho, D. E. Sosnovik, and L. Josephson, Angew. Chem. Int. Ed., 51, 6904 (2012).

    Article  CAS  Google Scholar 

  18. H. Cho, D. Alcantara, H. Yuan, R. A. Sheth, H. H. Chen, P. Huang, S. B. Andersson, D. E. Sosnovik, U. Mahmood, and L. Josephson, ACS Nano, 7, 2032 (2013).

    Article  CAS  Google Scholar 

  19. H. Yuan, H. Cho, H. H. Chen, M. Panagia, D. E. Sosnovik, and L. Josephson, Chem. Commun., 49, 10361 (2013).

    Article  CAS  Google Scholar 

  20. M. Q. Wilks, M. D. Normandin, H. Yuan, H. Cho, Y. Guo, F. Herisson, C. Ayata, D. W. Wooten, G. El Fakhri, and L. Josephson, Bioconjug. Chem., 26, 1061 (2015).

    Article  CAS  Google Scholar 

  21. M. Yin, Z. Li, Z. Liu, J. Ren, X. Yang, and X. Qu, Chem. Commun. (Camb.), 48, 6556 (2012).

    Article  CAS  Google Scholar 

  22. H. H. Chen, H. Yuan, H. Cho, Y. Feng, S. Ngoy, A. T. Kumar, R. Liao, W. Chao, L. Josephson, and D. E. Sosnovik, Theranostics, 7, 814 (2017).

    Article  CAS  Google Scholar 

  23. H. Cho, Y. Guo, D. E. Sosnovik, and L. Josephson, Inorg. Chem., 52, 12216 (2013).

    Article  CAS  Google Scholar 

  24. W. D. Wilson, F. A. Tanious, H. J. Barton, R. L. Jones, K. Fox, R. L. Wydra, and L. Strekowski, Biochemistry, 29, 8452 (1990).

    Article  CAS  Google Scholar 

  25. J. B. Chaires, Arch. Biochem. Biophys., 453, 26 (2006).

    Article  CAS  Google Scholar 

  26. M. Mammen, S.-K. Choi, and G. M. Whitesides, Angew. Chem. Int. Ed., 37, 2754 (1998).

    Article  Google Scholar 

  27. P. I. Kitov and D. R. Bundle, J. Am. Chem. Soc., 125, 16271 (2003).

    Article  CAS  Google Scholar 

  28. J. M. Burridge, P. Quarendon, C. A. Reynolds, and P. J. Goodford, J. Mol. Graphics, 5, 165 (1987).

    Article  CAS  Google Scholar 

  29. D. Xu, in Electrostatics of Nucleic Acids and Hydration Properties of the Pseudouridin Dependent Spliceosomal Branch Site Helix, Doctoral Dissertation, The Florida State University, 2007, pp 33–47.

    Google Scholar 

  30. B. Gaugain, J. Barbet, N. Capelle, B. P. Roques, and J. B. Le Pecq, Biochemistry, 17, 5078 (1978).

    Article  CAS  Google Scholar 

  31. G. L. Silva, V. Ediz, D. Yaron, and B. A. Armitage, J. Am. Chem. Soc., 129, 5710 (2007).

    Article  CAS  Google Scholar 

  32. A. Larsson, C. Carlsson, M. Jonsson, and B. Albinsson, J. Am. Chem. Soc., 116, 8459 (1994).

    Article  CAS  Google Scholar 

  33. B. L. Roth, M. Poot, S. T. Yue, and P. J. Millard, Appl. Environ. Microbiol., 63, 2421 (1997).

    CAS  Google Scholar 

  34. A. Fürstenberg, T. G. Deligeorgiev, N. I. Gadjev, A. A. Vasilev, and E. Vauthey, Chem. Eur. J., 13, 8600 (2007).

    Article  Google Scholar 

  35. B. A. Armitage, in DNA Binders and Related Subjects, M. J. Waring and J. B. Chaires, Eds., Springer, Berlin/Heidelberg, 2005, Vol. 253, pp 55–76.

    Article  CAS  Google Scholar 

  36. W. Beisker, E. M. Weller-Mewe, and M. Nusse, Cytometry, 37, 221 (1999).

    Article  CAS  Google Scholar 

  37. S. M. Yarmoluk, V. B. Kovalska, and M. Y. Losytskyy, Biotech. Histochem., 83, 131 (2008).

    Article  CAS  Google Scholar 

  38. N. J. A. Sloane. with the collaboration of R. H. Hardin, W. D. Smith and others, Tables of Spherical Codes, published electronically at http://neilsloane.com/packings/

  39. J. Nygren, N. Svanvik, and M. Kubista, Biopolymers, 46, 39 (1998).

    Article  CAS  Google Scholar 

  40. S. Prodhomme, J. P. Demaret, S. Vinogradov, U. Asseline, L. Morin-Allory, and P. Vigny, J. Photochem. Photobiol. B, 53, 60 (1999).

    Article  CAS  Google Scholar 

  41. C. A. Van Hooijdonk, C. P. Glade, and P. E. Van Erp, Cytometry, 17, 185 (1994).

    Article  Google Scholar 

  42. A. Krishan, J. Cell Biol., 66, 188 (1975).

    Article  CAS  Google Scholar 

  43. C. D. Ockleford, B. L. Hsi, J. Wakely, R. A. Badley, A. Whyte, and W. P. Faulk, J. Immunol. Methods, 43, 261 (1981).

    Article  CAS  Google Scholar 

  44. J. P. Jacobsen, J. B. Pedersen, L. F. Hansen, and D. E. Wemmer, Nucleic Acids Res., 23, 753 (1995).

    Article  CAS  Google Scholar 

  45. L. F. P. De Castro and M. Zacharias, J. Mol. Recognit., 15, 209 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoonsung Cho.

Additional information

Acknowledgments: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01059289).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, CK., Hong, S.K., Kim, Y.H. et al. Nucleic Acid-Binding Fluorochromes and Nanoparticles: Structural Aspects of Binding Affinity and Fluorescence Intensity. Macromol. Res. 26, 204–209 (2018). https://doi.org/10.1007/s13233-018-6053-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6053-8

Keywords

Navigation