Skip to main content
Log in

Crystallization morphology transition of poly(3-hydroxybutyrate) films depending on nucleation temperature under temperature gradient

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The growth of spherulites is an intricate process and the final morphology is dependent on many process conditions. The spherulitic morphologies of poly(3-hydroxybutyrate) (PHB) crystallized from melt film are observed under various crystallization temperature gradient (the non-isothermal crystallization) in this work. Characterization reveals that the crystal morphologies (banded or nonbanded spherulites) of PHB film are determined significantly by nucleation temperature (not growth temperature). Interestingly, banded spherulites, nucleated between 60-135 °C, are able to grow completely above growth temperature 135 °C or below 60 °C yet and non-banded shperulites nucleated at above 135 °C can also develop steadily till below growth temperature 135 °C under temperature gradient condition. Therefore, the conclusion drawn from the temperature gradient or non-isothermal process is novel and different from the result of isothermal crystallization (morphology mainly depending on the growth temperature). In addition, the growth and evolution kinetics of banded and non-banded spherulites are both investigated for some polymer thin films under the temperature gradient in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Toda, M. Okamura, K. Taguchi, M. Hikosaka, and H. Kajioka, Macromolecules, 41, 2484 (2008).

    Article  CAS  Google Scholar 

  2. Y. F. Chen, E. M. Woo, and S. H. Li, Langmuir, 24, 11880 (2008).

    Article  CAS  Google Scholar 

  3. M. M. He, T. Wei, L. Zhang, and Q. Jia, Polym. Eng. Sci., 56, 829 (2016).

    Article  CAS  Google Scholar 

  4. Z. Wang, G. C. Alfonso, Z. Hu, J. Zhang, and T. He, Macromolecules, 41, 7584 (2008).

    Article  CAS  Google Scholar 

  5. A. Keller, J. Polym. Sci., 17, 291 (1955).

    Article  CAS  Google Scholar 

  6. M. L. Xue, J. Sheng, Y. L. Yu, and H. H. Chuah, J. Eur. Polym., 40, 811 (2004).

    Article  CAS  Google Scholar 

  7. P. J. Phillips, G. J. Rensch, and K. D. Taylor, J. Polym. Sci. Part B: Polym. Phys., 25, 1725 (1987).

    Article  CAS  Google Scholar 

  8. J. Yu and Z. Qiu, Ind. Eng. Chem. Res., 50, 12579 (2011).

    Article  CAS  Google Scholar 

  9. G. Ding, J. Liu, Colloid Polym. Sci., 291, 1547 (2013).

    Article  CAS  Google Scholar 

  10. A. Toda, M. Okamura, K. Taguchi, M. Hikosaka, and H. Kajioka, Macromolecules, 41, 3949 (2008).

    Article  Google Scholar 

  11. M. Yasuniwa, S. Tsubakihara, K. Iura, Y. Ono, Y. Dan, and K. Takahashi, Polymer, 47, 7554 (2006).

    Article  CAS  Google Scholar 

  12. J. Li, Z. Hu, Z. Wang, Q. Gu, Y. Wang, and Y. Huang, Ind. Eng. Chem. Res., 52, 1892 (2013).

    Article  CAS  Google Scholar 

  13. Y. Li, H. Huang, T. He, and Z. Wang, ACS Macro Lett., 1, 718 (2012).

    Article  CAS  Google Scholar 

  14. Y. Hikima, J. Morikawa, and T. Hashimoto, Macromolecules, 46, 1582 (2013).

    Article  CAS  Google Scholar 

  15. J. M. Schultz and D. R. Konloch, Polymer, 10, 271 (1969).

    Article  CAS  Google Scholar 

  16. H. D. Keith and F. J. Padden, J. Appl. Phys., 34, 2409 (1963).

    Article  CAS  Google Scholar 

  17. A. J. Lovinger and C. C. Gryte, Macromolecules, 9, 247 (1976).

    Article  CAS  Google Scholar 

  18. A. J. Lovinger, C. M. Lau, and C. C. Gryte, Polymer, 17, 581 (1976).

    Article  CAS  Google Scholar 

  19. A. J. Lovinger, and T. T. Wang, Polymer, 20, 725 (1979).

    Article  CAS  Google Scholar 

  20. A. Pawlak and E. Piorkowska, Colloid Polym. Sci., 279, 939 (2001).

    Article  CAS  Google Scholar 

  21. E. Piorkowska, J. Appl. Polym. Sci., 86, 351 (2002).

    Google Scholar 

  22. A. Pawlak, J. Chapel, and E. Piorkowska, J. Appl. Polym. Sci., 86, 1318 (2002).

    Article  CAS  Google Scholar 

  23. A. Toda, K. Taguchi, and H. Kajioka, Macromolecules, 45, 852 (2012).

    Article  CAS  Google Scholar 

  24. M. Huh, M. H. Jung, Y. S. Park, B. Kim, M. S. Kang, P. J. Holden, and S. I. Yun, Macromol. Res., 22, 765 (2014).

    Article  CAS  Google Scholar 

  25. M. Pizzoli, M. Scandola, and G. Ceccorulli, Macromolecules, 35, 3937 (2002).

    Article  CAS  Google Scholar 

  26. M. L. Di Lorenzo, M. Gazzano, and M. C. Righetti, Macromolecules, 45, 5684 (2012).

    Article  CAS  Google Scholar 

  27. G. Ding, L. Chen, and J. Liu, Polym. Korea, 39, 860 (2015).

    Article  CAS  Google Scholar 

  28. J. Lim and J. Kim, Macromol. Res., 24, 9 (2016).

    Article  CAS  Google Scholar 

  29. M. Huh, M. H. Jung, Y. S. Park, B. Kim, M. S. Kang, P. J. Holden, and S. Yun, Macromol. Res., 22, 765 (2014).

    Article  CAS  Google Scholar 

  30. H. Sato, R. Murakami, J. Zhang, Y. Ozaki, K. Mori, I. Takahashi, H. Terauchi, and I. Noda, Macromol. Res., 14, 408 (2006).

    Article  CAS  Google Scholar 

  31. X. Sun, Z. Chen, F. Wang, S. Yan, and I. Takahashi, Macromolecules, 46, 1573 (2013).

    Article  CAS  Google Scholar 

  32. M. L. William, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc., 77, 3701 (1955).

    Article  Google Scholar 

  33. J. D. Hoffman, L. J. Frolen, G. S. Ross, and J. I. Lauritzen, J. Res. Nat. Bur. Stand, 79, 671 (1975).

    Article  Google Scholar 

  34. B. J. Jungnickel, Polymer Crystallization: Observations, Concepts and Interpretations, J. U. Sommer and G. Reiter, Eds., Springer, Berlin, 2003, Chap. 12.

  35. G. Schweicher, N. Paquay, C. Amato, R. Resel, M. Koini, S. Talvy, V. Lemaur, J. Cornil, Y. Geerts, and G. Gbabode, Cryst. Growth Des., 11, 3663 (2011).

    Article  CAS  Google Scholar 

  36. X. Dai, J. Zhang, Z. Ren, H. Li, X. Sun, and S. Yan, Polym. Chem., 7, 3705 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangzhu Ding or Jieping Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhang, G., Wang, K. et al. Crystallization morphology transition of poly(3-hydroxybutyrate) films depending on nucleation temperature under temperature gradient. Macromol. Res. 25, 303–310 (2017). https://doi.org/10.1007/s13233-017-5042-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5042-8

Keywords

Navigation