Skip to main content
Log in

Effect of graphene on the sound damping properties of flexible polyurethane foams

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The sound absorption coefficient, airflow resistivity and cell size of polyurethane (PU) foam with graphene as a solid-type additive and tetramethylsilane (TEMS) as a liquid-type additive were investigated. The results show that the sound absorption coefficient and airflow resistivity are closely related, and that increase of the flow resistivity improves the sound absorption coefficient of the PU foam. For the PU foam/graphene (0.2 phr) composite, the values of the sound absorption coefficient and airflow resistivity were 0.52 (frequency range of 1600 to 2500 Hz) and 292,900 Ns/m4, respectively, which were the highest values among the investigated additive species and additive content. The sound absorption coefficient of the PU foam/graphene (0.2 phr) composite increased by 18.2% compared with that of the PU foam without graphene. The results of the sound absorption coefficient and airflow resistivity of the PU foam suggest that graphene is an effective additive in the formation of the PU foam to decrease the cell size and increase the tortuous paths of the foams, and this small cell size consequently increases the acoustic damping properties of the PU foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Chung, H. Y. Kim, J. H. Yu, and B. C. Chun, Macromol. Res., 23, 350 (2015).

    Article  CAS  Google Scholar 

  2. H. Im, S. C. Roh, and C. K. Kim, Macromol. Res., 21, 614 (2013).

    Article  CAS  Google Scholar 

  3. Y. Lee, M. G. Jang, K. H. Choi, C. Han, and W. N. Kim, J. Appl. Polym. Sci., 133, 43557 (2016).

    Google Scholar 

  4. S. H. Kim, H. C. Park, H. M. Jeong, and B. K. Kim, J. Mater. Sci., 45, 2675 (2010).

    Article  CAS  Google Scholar 

  5. G. Harikrishnan, S. N. Singh, E. Kiesel, and C. W. Macosko, Polymer, 51, 3349 (2010).

    Article  CAS  Google Scholar 

  6. M. DeBolt, A. Kiziltas, D. Mielewski, S. Waddington, and M. J. Nagridge, J. Appl. Polym. Sci., 133, 44086 (2016).

    Article  Google Scholar 

  7. C. H. Sung, K. S. Lee, S. M. Oh, J. H. Kim, M. S. Kim, and H. M. Jeong, Macromol. Res., 15, 443 (2007).

    Article  CAS  Google Scholar 

  8. R. Verdejo, R. Stampfli, M. Alvarez-Lainez, S. Mourad, M. A. Rodriguez-Perez, P. A. Bruhwiler, and M. Shaffer, Compos. Sci. Technol., 69, 1564 (2009).

    Article  CAS  Google Scholar 

  9. A. Andersson, S. Lundmark, A. Magnusson, and F. H. Maurer, J. Cell. Plast., 46, 73 (2010).

    Article  CAS  Google Scholar 

  10. A. Hasani Baferani, R. Keshavarz, M. Asadi, and A. R. Ohadi, Adv. Polym. Technol., 35, 21643 (2016).

    Google Scholar 

  11. M. Bandarian, A. Shojaei, and A. M. Rashidi, Polym. Int., 60, 475 (2011).

    Article  CAS  Google Scholar 

  12. D. Klempner, D. Sophiea, B. Suthar, K. C. Frisch, and V. Sendijarevic, Polym. Mater. Sci. Eng., 65, 82 (1991).

    CAS  Google Scholar 

  13. L. J. Gibson and M. F. Ashby, Cellular Solids, 2nd ed., Cambridge University Press, New York, 1997.

    Book  Google Scholar 

  14. Y. Imai and T. Asano, J. Appl. Polym. Sci., 27, 183 (1982).

    Article  CAS  Google Scholar 

  15. S. Ghaffari Mosanenzadeh, H. E. Naguib, C. B. Park, and N. Atalla, J. Mater. Sci., 50, 1248 (2015).

    Article  CAS  Google Scholar 

  16. Y. H. Kim, S. C. Choi, J. M. Kim, M. S. Han, and W. N. Kim, Macromol. Res., 15, 676 (2007).

    Article  CAS  Google Scholar 

  17. M. J. Kang, Y. H. Kim, G. P. Park, M. S. Han, W. N. Kim, and S. D. Park. J. Mater. Sci., 45, 5412 (2010).

    Article  CAS  Google Scholar 

  18. Y. H. Kim, M. J. Kang, G. P. Park, S. D. Park, S. B. Kim, and W. N. Kim, J. Appl. Polym. Sci., 124, 3117 (2012).

    Article  CAS  Google Scholar 

  19. D. X. Yan, K. Dai, Z. D. Xiang, Z. M. Li, X. Ji, and W. Q. Zhang, J. Appl. Polym. Sci., 120, 3014 (2011).

    Article  CAS  Google Scholar 

  20. J. M. Kim, Y. Lee, M. G. Jang, C. Han, and W. N. Kim, J. Appl. Polym. Sci., 133, 44373 (2016).

    Google Scholar 

  21. C. Zhang, D. Vennerberg, and M. Kessler, J. Appl. Polym. Sci., 132, 42515 (2015).

    Google Scholar 

  22. D. W. Van Krevelen and K. Te Nijenhuis, in Properties of Polymers, Elsevier, Amsterdam, 2009, 4th ed., Chap. 8, p 233.

    Google Scholar 

  23. J. Suhr, N. Koratkar, P. Keblinski, and P. Ajayan, Nat. Mater., 4, 134 (2005).

    Article  CAS  Google Scholar 

  24. P. M. Ajayan, J. Suhr, and N. Koratkar, J. Mater. Sci., 41, 7824 (2006).

    Article  CAS  Google Scholar 

  25. O. Doutres, A. Noureddine, and K. Dong, J. Appl. Phys., 110, 064901 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Nyon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.M., Kim, D.H., Kim, J. et al. Effect of graphene on the sound damping properties of flexible polyurethane foams. Macromol. Res. 25, 190–196 (2017). https://doi.org/10.1007/s13233-017-5017-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5017-9

Keywords

Navigation