Skip to main content
Log in

Syntheses of carboxymethylcellulose/graphene nanocomposite superabsorbent hydrogels with improved gel properties using electron beam radiation

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Nanocomposite superabsorbent hydrogels (NCSHs) were prepared via electron beam radiation-assisted polymerization using carboxymethylcellulose (CMC) and carbon materials as a superabsorbent polymer and additive inorganic nanomaterial, respectively. Carbon materials such as graphite oxide (GO), reduced graphene oxide (rGO), and activated carbon (AC) were used as additives. The chemical structure and morphology of the prepared NCSHs and pure superabsorbent hydrogels (SHs) were characterized using Fourier transform infrared spectroscopy and optical microscopy. In the prepared NCSHs, the carbon components were dispersed well in the CMC polymer matrix. The mechanical strength and gel fraction of the prepared materials were measured, and the swelling kinetics were evaluated using distilled water, urea solution, and physiological saline water. The prepared NCSHs using GO and rGO exhibited larger gel fraction and mechanical strength than the corresponding non-composite SHs. Electron beam radiation was more effective than solution polymerization in the syntheses of SHs and NCSHs with large gel fraction and high mechanical strength. The NCSHs prepared by electron beam radiation exhibited comparable swelling capabilities to those prepared by solution polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1996 Protocol to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (as amended in 2006).

  2. M. J. Zohuriaan-Mehr and K. Kabiri, Iran. Polym. J., 17, 451 (2008).

    CAS  Google Scholar 

  3. R. Po, J. Macromol. Sci. C, C34, 607 (1994).

    Article  Google Scholar 

  4. K. M. El Salmawi and S. M. Ibrahim, Macromol. Res., 19, 1029 (2011).

    Article  Google Scholar 

  5. A. I. Raafat, M. Eid, and M. B. El-Arnaouty, Nucl. Instrum. Methods. B, 283, 71 (2012).

    Article  CAS  Google Scholar 

  6. K. Kabiri, H. Omidian, M. J. Zohuriaan-Mehr, and S. Doroudiani, Polym. Compos., 32, 277 (2011).

    Article  CAS  Google Scholar 

  7. H. Kim, A. A. Abdala, and C. W. Macosko, Macromolecules, 43, 6515 (2010).

    Article  CAS  Google Scholar 

  8. J. Qiu, L. Xu, J. Peng, M. Zhai, L. Zhao, J. Li, and G. Wei, Carbohydr. Polym., 70, 236 (2007).

    Article  CAS  Google Scholar 

  9. X. Ma, Y. Li, W. Wang, Q. Ji, and Y. Xia, Eur. Polym. J., 49, 389 (2013).

    Article  CAS  Google Scholar 

  10. Y. Huang, M. Zeng, J. Ren, J. Wang, L. Fan, and Q. Xu, Colloids Surf. A, 401, 97 (2012).

    Article  CAS  Google Scholar 

  11. A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).

    Article  CAS  Google Scholar 

  12. A. K. Geim, Science, 324, 1530 (2009).

    Article  CAS  Google Scholar 

  13. B. Fei, R. A. Wach, H. Mitomo, F. Yoshii, and T. Kume, J. Appl. Polym. Sci., 78, 278 (2000).

    Article  CAS  Google Scholar 

  14. C. Chang, B. Duan, J. Cai, and L. Zhang, Eur. Polym. J., 46, 92 (2010).

    Article  CAS  Google Scholar 

  15. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano, 4, 4806 (2010).

    Article  CAS  Google Scholar 

  16. H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, and I. A. Aksay, J. Phys. Chem. B, 110, 8535 (2006).

    Article  CAS  Google Scholar 

  17. J. Kwon and B. Lee, Chem. Eng. Res. Des., 104, 519 (2015).

    Article  CAS  Google Scholar 

  18. I. Katime, A. Álvarez-Bautista, L. G. Guerrero-Ramírez, and E. Mendizábal, Topol. Supramol. Polym. Sci., 1, 17 (2014).

    Google Scholar 

  19. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett., 97, 187401 (2006).

    Article  CAS  Google Scholar 

  20. Y. J. Lee, G.-P. Kim, Y. Bang, J. Yi, J. G. Seo, and I. K. Song, Mater. Res. Bull., 50, 240 (2014).

    Article  CAS  Google Scholar 

  21. H. M. N. El-Din, S. G. A. Alla, and A. W. M. El-Naggar, Radiat. Phys. Chem., 79, 725 (2010).

    Article  Google Scholar 

  22. R. A. Wach, H. Mitomo, F. Yoshii, and T. Kume, J. Appl. Polym. Sci., 81, 3030 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byunghwan Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, Y., Kim, TH. & Lee, B. Syntheses of carboxymethylcellulose/graphene nanocomposite superabsorbent hydrogels with improved gel properties using electron beam radiation. Macromol. Res. 24, 143–151 (2016). https://doi.org/10.1007/s13233-016-4020-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4020-x

Keywords

Navigation