Skip to main content
Log in

Effect of pore sizes of silk scaffolds for cartilage tissue engineering

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effects of silk fibroin scaffold, a natural biodegradable polymer scaffold, on the adhesive and proliferative behaviors of chondrocytes. Various silk fibroin scaffolds were produced using the salt extraction method, and scaffolds with different pore sizes (90-180, 180-250, 250-355, and 355-425 μm) were constructed based on the size of the salt particles. Chondrocytes were seeded on the scaffolds and incubated. The produced scaffolds were analyzed with Fourier transform-infrared spectroscopy and exhibited characteristics similar to those of natural silk in terms of chemical composition and structure. Moreover, we found that the mechanical strength decreased as the pore size increased. Scanning electron microscopy images confirmed the existence of pores in the silk fibroin scaffold. Additionally, scaffolds with smaller pore sizes facilitated improved cell adhesion. Using MTT analysis, we found that scaffold with pore sizes of 90-180 and 180-250 μm provided the best environment for cell proliferation. The amount levels of sulfated glycosaminoglycan (sGAG) and collagen were highest for scaffolds with a pore size of 90-180 μm. In gene expression analysis, scaffolds with pore sizes of 90-180 and 180-250 μm showed the highest expression of the chondrocytes marker aggrecan and type II collagen. Collectively, these data suggest that silk fibroin scaffolds with smaller pore sizes (90-250 μm) provide the best environment for adhesion and proliferation of chondrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. Qazi, R. Rai, and A. R. Boccaccini, Biomaterials, 35, 9068 (2014).

    Article  CAS  Google Scholar 

  2. D. Schumann, A. K. Ekaputra, C. X. Lam, and D. W. Hutmacher, Methods Mol. Med., 140, 101 (2007).

    Article  CAS  Google Scholar 

  3. A. Vats, N. S. Tolley, J. M. Polak, and J. E. Gough, Clin. Otolaryngol. Allied Sci., 28, 165 (2003).

    Article  CAS  Google Scholar 

  4. S. J. Lee, Int. J. Tissue Regen., 4, 89 (2013).

    Google Scholar 

  5. S. L. Niemansburg, J. J. van Delden, F. C. Oner, W. J. Dhert, and A. L. Bredenoord, Spine J., 14, 1029 (2014).

    Article  Google Scholar 

  6. A. French, J. Y. Suh, C. Y. Suh, L. Rubin, R. Barker, K. Bure, B. Reeve, and D. A. Brindley, Trends Biotechnol., 32, 436 (2014).

    Article  CAS  Google Scholar 

  7. A. Atala, J. Pediatr. Surg., 47, 17 (2012).

    Article  Google Scholar 

  8. E. Cosgriff-Hernandez and A. G. Mikos, Pharm. Res., 25, 2345 (2008).

    Article  CAS  Google Scholar 

  9. L. M. Li, M. Han, G. Khang, and J. Q. Gao, Int. J. Tissue Regen., 4, 65 (2013).

    Google Scholar 

  10. L. P. Yan, J. M. Oliveira, A. L. Oliveira, S. G. Caridade, J. F. Mano, and R. L. Reis, Acta Biomater., 8, 289 (2012).

    Article  CAS  Google Scholar 

  11. S. Talukdar, Q. T. Nguyen, A. C. Chen, R. L. Sah, and S. C. Kundu, Biomaterials, 32, 8927 (2011).

    Article  CAS  Google Scholar 

  12. Y. Wang, D. J. Blasioli, H. J. Kim, H. S. Kim, and D. L. Kaplan, Biomaterials, 27, 4434 (2006).

    Article  CAS  Google Scholar 

  13. F. J. O’Brien, B. A. Harley, M. A. Waller, I. V. Yannas, L. J. Gibson, and P. J. Prendergast, Technol. Health Care, 15, 3 (2007).

    Google Scholar 

  14. C. M. Murphy, M. G. Haugh, and F. J. O’Brien, Biomaterials, 31, 461 (2010).

    Article  CAS  Google Scholar 

  15. C. Lane and J. Boulton, Adv. Biosci., 63, 125 (1987).

    Google Scholar 

  16. G. L. Wilkes and S. L. Samuels, J. Biomed. Mater. Res., 7, 541 (1973).

    Article  CAS  Google Scholar 

  17. L. Norton and M. Chvapil, J. Trauma, 21, 463 (1981).

    CAS  Google Scholar 

  18. K. J. Quinn, J. M. Courtney, J. H. Evans, J. D. S. Gaylor, and W. H. Reid, Biomaterials, 6, 369 (1985).

    Article  CAS  Google Scholar 

  19. P. Le Bail, F. G. Morin, and R. H. Marchessault, Int. J. Biol. Macromol., 26, 193 (1999).

    Article  CAS  Google Scholar 

  20. M. K. Yoo, H. Y. Kweon, K. G. Lee, H. C. Lee, and C. S. Cho, Int. J. Biol. Macromol., 34, 263 (2004).

    Article  CAS  Google Scholar 

  21. C. Correia, S. Bhumiratana, L. P. Yan, A. L. Oliveira, J. M. Gimble, D. Rockwood, D. L. Kaplan, R. A. Sousa, R. L. Reis, and G. Vunjak-Novakovic, Acta Biomater., 8, 2483 (2012).

    Article  CAS  Google Scholar 

  22. H. S. Park, M. S. Gong, J. H. Park, S. I. Moon, I. B. Wall, H. W. Kim, J. H. Lee, and J. C. Knowles, Acta Biomater., 9, 8962 (2013).

    Article  CAS  Google Scholar 

  23. Y. Wang, D. D. Rudym, A. Walsh, L. Abrahamsen, H. J. Kim, H. S. Kim, C. Kirker-Head, and D. L. Kaplan, Biomaterials, 29, 3415 (2008).

    Article  CAS  Google Scholar 

  24. J. Jin, J. Wang, J. Huang, F. Huang, J. Fu, X. Yang, and Z. Miao, J. Biosci. Bioeng., 118, 593 (2014).

    Article  CAS  Google Scholar 

  25. B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, Adv. Drug Deliv. Rev., 65, 457 (2013).

    Article  CAS  Google Scholar 

  26. M. Demoor, D. Ollitrault, T. Gomez-Leduc, M. Bouyoucef, M. Hervieu, H. Fabre, J. Lafont, J. M. Denoix, F. Audigie, F. Mallein-Gerin, F. Legendre, and P. Galera, Biochim. Biophys. Acta, 1840, 2414 (2014).

    Article  CAS  Google Scholar 

  27. Q. Han, L. Fan, B. C. Heng, and Z. Ge, Int. J. Tissue Regen., 4, 61 (2013).

    Google Scholar 

  28. E. G. Khaled, M. Saleh, and S. Hindocha, Open Orthop. J., 5, 289 (2011).

    Article  Google Scholar 

  29. Yannas IV, Clin. Mater., 9, 179 (1992).

    Article  CAS  Google Scholar 

  30. Q. Zhang, H. Lu, N. Kawazoe, and G. Chen, Acta Biomater., 10, 2005 (2014).

    Article  CAS  Google Scholar 

  31. T. A. Kelly, B. L. Roach, Z. D. Weidner, C. R. Mackenzie-Smith, G. D. O’Connell, E. G. Lima, A. M. Stoker, J. L. Cook, G. A. Ateshian, and C. T. Hung, J. Biomech., 46, 1784 (2013).

    Article  Google Scholar 

  32. Y. Zhang, C. Wu, T. Friis, and Y. Xiao, Biomaterials, 31, 2848 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilson Khang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, KS., Song, J.E., Tripathy, N. et al. Effect of pore sizes of silk scaffolds for cartilage tissue engineering. Macromol. Res. 23, 1091–1097 (2015). https://doi.org/10.1007/s13233-015-3156-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3156-4

Keywords

Navigation