Skip to main content
Log in

Liquid crystal-based biosensors using a strong polyelectrolyte-containing block copolymer, poly(4-cyanobiphenyl-4′-oxyundecylacrylate)-b-poly(sodium styrene sulfonate)

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The interface between a nematic liquid crystal phase, 4-cyano-4′-pentylbiphenyl (5CB) and water was examined for protein detection by monitoring the formation of a complex between sodium polystyrene sulfonate (PSSNa) and a positively charged biological species on the 5CB in a transmission electron microscopy (TEM) grid cell coated with a strong anionic polyelectrolyte-containing block copolymer, LCP-b-PSSNa (LCP:poly(4-cyanobiphenyl-4′-oxyundecylacrylate)). This block copolymer was successfully synthesized by reversible addition-fragmentation chain transfer polymerization. A monolayer of LCP-b-PSSNa in a Langmuir Blodgett trough (in which PSSNa and LCP were located in and above water, respectively, in the TEM grid cell) was transferred to the 5CB/water interface in the 5CB-filled TEM grid that was already placed on octadecyltrichlorosilane-coated glass. Model proteins such as bovine serum albumin (BSA), hemoglobin (Hb), α chymotrypsinogen-A (ChTg), and lysozyme (LYZ) having different isoelectric points (pIs) were tested for non-specific protein detection. When the protein solutions were injected into the TEM grid cell, the initial homeotropic orientation of 5CB in the TEM grid cell changed to a planar one below the pIs of the proteins due to electrostatic interactions between PSSNa (- charge) and the proteins (+ charge); this did not occur above the pIs of the tested proteins. The minimum concentrations at which the homeotropic to planar configurational changes (H-P changes) occurred were 0.02, 0.04, 0.04, and 0.08 wt% for BSA, Hb, ChTg, and LYZ, respectively. Therefore, the positively charged biomaterials were visually detected at the PSSNa-coated LC/water interface during an H-P change by using polarized optical microscopy under crossed polarizers. This simple set-up for non-specific biomaterial detection paves a way for the development of efficient and excellent quality biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Wandera, S. R. Wickramasinghe, and S. M. Husson, J. Membr. Sci., 357, 6 (2010).

    Article  CAS  Google Scholar 

  2. L. F. Gudeman and N.A. Peppas, J. Membr. Sci., 107, 239 (1995).

    Article  CAS  Google Scholar 

  3. J. F. Hester, S. C. Olugebefola, and A. M. Mayes, J. Membr. Sci., 208, 375 (2002).

    Article  CAS  Google Scholar 

  4. L. Ying, P. Wang, E. T. Kang, and K. G. Neoh, Macromolecules, 35, 673 (2001).

    Article  Google Scholar 

  5. M. Orlov, I. Tokarev, A. Scholl, A. Doran, and S. Minko, Macromolecules, 40, 2086 (2007).

    Article  CAS  Google Scholar 

  6. Q. Wei, J. Li, B. Qian, B. Fang, and C. Zhao, J. Membr. Sci., 337, 266 (2009).

    Article  CAS  Google Scholar 

  7. Q. Shi, Y. Su, W. Zhao, C. Li, Y. Hu, Z. Jiang, and S. Zhu, J. Membr. Sci., 319, 271 (2008).

    Article  CAS  Google Scholar 

  8. R. Huang, L. K. Kostanski, C. D. M. Filipe, and R. Ghosh, J. Membr. Sci., 336, 42 (2009).

    Article  CAS  Google Scholar 

  9. E. C. Cho, Y. D. Kim, and K. Cho, Polymer, 45, 3195 (2004).

    Article  CAS  Google Scholar 

  10. S. Y. Wong, L. Han, K. Timachova, J. Veselinovic, M. N. Hyder, C. Ortiz, A. M. Klibanov, and P. T. Hammond, Biomacromolecules, 13, 719 (2012).

    Article  CAS  Google Scholar 

  11. D. S. Salloum and J. B. Schlenoff, Biomacromolecules, 5, 1089 (2004).

    Article  CAS  Google Scholar 

  12. D. R. Belanger, M. G. Tierney, and G. Dickinson, Ann. Emerg. Med., 21, 1312 (1992).

    Article  CAS  Google Scholar 

  13. A. Tsuboi, T. Izumi, M. Hirata, J. L. Xia, P. L. Dubin, and E. Kokufuta, Langmuir, 12, 6295 (1996).

    Article  CAS  Google Scholar 

  14. J. M. Seo, W. Khan, and S. Y. Park, Soft Matter, 8, 198 (2012).

    Article  CAS  Google Scholar 

  15. W. Khan and S. Y. Park, Lab Chip, 12, 4553 (2012).

    Article  CAS  Google Scholar 

  16. D. A.Winterbottom, R. Narayanaswamy, and I. M. Raimundo Jr., Sens. Actuators B: Chem., 90, 52 (2003).

    Article  Google Scholar 

  17. X. Bi, S. Huang, D. Hartono, and K.-L. Yang, Sens. Actuators B: Chem., 127, 406 (2007).

    Article  CAS  Google Scholar 

  18. X. Bi and K.-L. Yang, Sens. Actuators B: Chem., 134, 432 (2008).

    Article  CAS  Google Scholar 

  19. N. A. Lockwood and N. L. Abbott, Curr. Opin. Colloid Interface Sci., 10, 111 (2005).

    Article  CAS  Google Scholar 

  20. M. I. Kinsinger, M. E. Buck, M.-V. Meli, N. L. Abbott, and D. M. Lynn, J. Colloid Interface Sci., 341, 124 (2010).

    Article  CAS  Google Scholar 

  21. S. Perrier, P. Takolpuckdee, J. Westwood, and D. M. Lewis, Macromolecules, 37, 2709 (2004).

    Article  CAS  Google Scholar 

  22. W. Khan, J. M. Seo, and S. Y. Park, Soft Matter, 7, 780 (2011).

    Article  CAS  Google Scholar 

  23. J. C. Dubois, G. Decobert, P. L. Barny, S. C. Friedrich, and C. Noel, Mol. Cryst. Liq. Cryst., 137, 349 (1986).

    Article  CAS  Google Scholar 

  24. D. Y. Lee, J. M. Seo, W. Khan, J. A. Kornfield, Z. Kurji, and S. Y. Park, Soft Matter, 6, 1964 (2010).

    Article  CAS  Google Scholar 

  25. J. Y. Yang, K. Mathauer, and C. W. Frank, Microchemistry: Spectroscopy and Chemistry in Small Domains, M. Masuhara, F. C. Kitamura, and N. Tamai, Eds., North Holland, New York, 1994.

  26. Adv. Mater., 20, A1, DOI: 10.1002/adma.200890067 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Young Park.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omer, M., Islam, M.T., Khan, M. et al. Liquid crystal-based biosensors using a strong polyelectrolyte-containing block copolymer, poly(4-cyanobiphenyl-4′-oxyundecylacrylate)-b-poly(sodium styrene sulfonate). Macromol. Res. 22, 888–894 (2014). https://doi.org/10.1007/s13233-014-2112-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2112-z

Keywords

Navigation