Skip to main content
Log in

Fabrication of microporous three-dimensional scaffolds from silk fibroin for tissue engineering

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Scaffolds derived from silk fibroin are widely used as biomaterials. In this report, a new all-aqueous process is described for the production of three-dimensional porous silk fibroin scaffolds. The process uses poly(ethylene oxide), and a novel salt leaching technique. The fabricated scaffolds were tested for their physical characteristics. The measured scaffold porosity ranged from approximately 67.95% to 84.7%. Swelling studies demonstrated that the fabricated scaffolds had fair hydrophilicity. The mechanical properties of the scaffolds, namely their compressive strength and compressive modulus, were outstanding, compared to those of previous reports. Tests on the growth of cell cultures demonstrated that the scaffolds provide favorable conditions for the growth of human chondrocytes, with increases in cell attachment and cell proliferation. The use of this new technique for scaffold fabrication provides clear advantages in the field of biomaterials and related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. X. Ma, Tissue Engineering. Encyclopedia of Polymer Science and Technology, 3rd ed., Wiley & Sons, NJ, 2004.

    Google Scholar 

  2. R. Zhang and P. X. Ma, J. Biomed. Mater. Res., 52, 430 (2000).

    Article  CAS  Google Scholar 

  3. H. J. Kim, H. S. Kim, A. Matsumoto, I. J. Chin, H. J. Jin, and D. L. Kaplan, Aust. J. Chem., 58, 716 (2005).

    Article  CAS  Google Scholar 

  4. R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, Biomaterials, 26, 3385 (2005).

    Article  CAS  Google Scholar 

  5. X. Zhang, C. B. Baughman, and D. L. Kaplan, Biomaterials, 29, 2217 (2008).

    Article  CAS  Google Scholar 

  6. H. J. Jin, J. Park, R. Valluzzi, P. Cebe, and D. L. Kaplan, Biomacromolecules, 5, 711 (2004).

    Article  CAS  Google Scholar 

  7. Y. Wang, D. D. Rudym, A. Walsh, L. Abrahamsen, H. J. Kim, H. S. Kim, C. Kirker-Head, and D. L. Kaplan, Biomaterials, 29, 3415 (2008).

    Article  CAS  Google Scholar 

  8. H. J. Kim, U. J. Kim, G. G. Leisk, C. Bayan, I. Georgakoudi, and D. L. Kaplan, Macromol. Biosci., 7, 643 (2007).

    Article  CAS  Google Scholar 

  9. U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, Biomaterials, 26, 2775 (2005).

    Article  CAS  Google Scholar 

  10. R. Nazarov, H. J. Jin, and D. L. Kaplan, Biomacromolecules, 5, 718 (2004).

    Article  CAS  Google Scholar 

  11. J. Zhou, C. B. Cao, and X. L. Ma, Int. J. Biol. Macromol., 45, 504 (2009).

    Article  CAS  Google Scholar 

  12. X. Zhang, C. Cao, X. Ma, and Y. Li, J. Mater. Sci. Mater. Med., 23, 315 (2012).

    Article  CAS  Google Scholar 

  13. N. W. Bhat and G. S. Nadiger, J. Appl. Polym. Sci., 25, 921 (1980).

    Article  CAS  Google Scholar 

  14. R. Y. Zhang and P. X. Ma, J. Biomed. Mater. Res., 44, 446 (1999).

    Article  CAS  Google Scholar 

  15. R. C. Thomson, M. J. Yaszemski, J. M. Powers, and A. G. Mikos, Biomaterials, 19, 1935 (1998).

    Article  CAS  Google Scholar 

  16. Y. Wang, E. Bella, C. S. D. Lee, C. Migliaresi, L. Pelcastre, Z. Schwarz, B. D. Boyan, and A. Motta, Biomaterials, 31, 467 (2010).

    Article  Google Scholar 

  17. N. A. Alcantar, E. S. Aydil, and J. N. Israelachvili, J. Biomed. Mater. Res., 51, 343 (2000).

    Article  CAS  Google Scholar 

  18. L. G. Griffith, Acta Mater., 48, 263 (2000).

    Article  CAS  Google Scholar 

  19. L. Huang, K. Nagapudi, R. P. Apkarian, and E. L. Chaikof, J. Biomater. Sci. Polym. Ed., 12, 979 (2001).

    Article  CAS  Google Scholar 

  20. U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, Biomacromolecules, 5, 786 (2004).

    Article  CAS  Google Scholar 

  21. T. Asakura, A. Kuzuhara, R. Tabeta, and H. Saito, Macromolecules, 18, 1841 (1985).

    Article  CAS  Google Scholar 

  22. I. C. Um, H. Kwon, Y. H. Park, and S. Hudson, Int. J. Biol. Macromol., 29, 91 (2001).

    Article  CAS  Google Scholar 

  23. L. D. Harris, B. S. Kim, and D. J. Mooney, J. Biomed. Mater. Res., 42, 396 (1998).

    Article  CAS  Google Scholar 

  24. J. C. Keller, G. B. Schneider, C. M. Stanford, and B. Kellogg, Implant Dent., 12, 175 (2003).

    Article  Google Scholar 

  25. Y. %Wang, D. J. Blasiloli, H. J. Kim, H. S. Kim, and D. L. Kaplan, Biomaterials, 27, 4434 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Hum Park.

Additional information

Both authors contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H.J., Lee, J.S., Lee, O.J. et al. Fabrication of microporous three-dimensional scaffolds from silk fibroin for tissue engineering. Macromol. Res. 22, 592–599 (2014). https://doi.org/10.1007/s13233-014-2083-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2083-0

Keywords

Navigation