Skip to main content

Advertisement

Log in

Hidden diversity of marine borderline lichens and a new order of fungi: Collemopsidiales (Dothideomyceta)

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

The fungal genus Collemopsidium comprises species that develop so-called borderline lichen symbioses with algae or cyanobacteria. Together with morphologically similar pyrenocarpous fungi it has been assigned to the family Xanthopyreniaceae. The adscription of this family to higher taxonomic ranks remain uncertain. Using sequence data of five nuclear genomic regions (nuLSU, nuSSU, tef1-α, rpb1 and rpb2) and one mitochondrial locus (mtSSU) we found that the studied representatives of this family are placed in the Dothideomyceta, yet relationships with the classes Dothideomycetes and Arthoniomycetes remain uncertain. We describe the new order Collemopsidiales to accommodate the genus Collemopsidium (paraphyletic as currently understood) and the lichenicolous genus Zwackhiomyces. Using five fungal fossils as calibrations points, we infer an age of c. 230 Mya for the crown of Collemopsidiales. Based on two molecular markers, we also provide insight into the global diversity of marine species of the genus Collemopsidium. According to the species delimitation algorithm GMYC, c. 26 putative species exist, far more than the six species recognized hitherto. We have confirmed this result by comparing the two alternative species models by means of Bayes factors, using path sampling and stepping-stone sampling algorithms to estimate the marginal likelihood of each model. Finally, our observations suggest rock-boring ability evolved in parallel in the different lineages within this group of fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts. Phycologia 6:127–160

    Article  CAS  Google Scholar 

  • Aptroot A (1998) Aspects of the integration of the taxonomy of lichenized and non-lichenized pyrenocarpous ascomycetes. Lichenologist 30:501–514

    Article  Google Scholar 

  • Bachmann E (1919) Der Thallus der Kalkflechten mit Chroolepus-, Scytonema- und Xanthocapsa-Gonidien. Nova Acta Abh Kais Leop-Carol Deutsch Akad f Naturf 105:1–80

    Google Scholar 

  • Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV (2012) Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol 29:2157–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beimforde C, Feldberg K, Nylinder S, Rikkinen J, Tuovila H, Dörfelt H, Gube M, Jackson DJ, Reitner J, Seyfullah LJ, Schmidt AR (2014) Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol Phylogenet Evol 78:386–398

    Article  PubMed  Google Scholar 

  • Bungartz F, Garvie LAJ, Nash TH (2004) Anatomy of the endolithic Sonoran Desert lichen Verrucaria rubrocincta Breuss: implications for biodeterioration and biomineralization. Lichenologist 36:55–73

    Article  Google Scholar 

  • Calatayud V, Triebel D, Pérez-Ortega S (2007) Zwackhiomyces cervinae, a new lichenicolous fungus (Xanthopyreniaceae) on Acarospora, with a key to the known species of the genus. Lichenologist 39:129–134

    Article  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Cockell CS, Herrera A (2008) Why are some microorganisms boring? Trends Microbiol 16:101–106

    Article  CAS  PubMed  Google Scholar 

  • Coppins BJ (1992) Pyrenocollema Reinke (1895). In: Purvis OW, Coppins BJ, Hawksworth DL, James PW, Moore DM (eds) The Lichen Flora of Great Britain and Ireland. Natural History Museum Publications, London, pp 515–518

    Google Scholar 

  • Coppins BJ, Aptroot A (2008) New species and combinations in The Lichens of the British Isles. Lichenologist 40:363–374

    Google Scholar 

  • Coppins BJ, James PW, Hawksworth DL (1992) New species and combinations in the lichen flora of Great Britain and Ireland. Lichenologist 24:351–369

    Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/ Accessed 14th October 2014)

  • Cubero O, Crespo A, Fatehi J, Bridge P (1999) DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Syst Evol 216:243–249

    Article  CAS  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayton PK (1971) Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol Monogr 41:351–389

    Article  Google Scholar 

  • de los Ríos A, Wierzchos J, Ascaso C (2014) The lithic microbial ecosystems of Antarctica’s McMurdo Dry Valleys. Antarct Sci 26:459–477

    Article  Google Scholar 

  • Diederich P, Schultz M (2009) Zwackhiomyces namibiensis, a new lichenicolous ascomycete (Xanthopyreniaceae) on Psorotichia from Namibia. Herzogia 22:173–176

    Google Scholar 

  • Doppelbaur HW (1959) Studien zur Anatomie und Entwicklungsgeschichte einiger endolitischen pyrenocarpen Flechten. Planta 53:246–292

    Article  Google Scholar 

  • Drummond A, Ho S, Phillips M, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egidi E, De Hoog GS, Isola D, Onofri S, Quaedvlieg W, De Vries M, Verkley GJM, Stielow JB, Zucconi L, Selbmann L (2014) Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies. Fungal Divers 65:127–165

    Article  Google Scholar 

  • Ezard T, Fujisawa T, Baraclough T et al. (2009) SPLITS: SPecies’ LImits by Threshold Statistics. http://R-Forge.R-project.org/projects/splits/

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fontaneto D, Herniou EA, Boschetti C, Caprioli M, Melone G, Ricci C, Barraclough TG (2007) Independently evolving species in asexual bdelloid rotifers. PLoS Biol 5:914–921

    Article  CAS  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Syst Biol 65:707–724

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application for the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gareth Jones EB, Suetrong S, Sakayaroi J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang KL (2015) Classification of marine Ascomycota, Basiciomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72

    Article  Google Scholar 

  • Gargas A, Taylor JW (1992) Polymerase chain reaction (PCR) primers for amplifying and sequencing nuclear 18S rDNA from lichenized fungi. Mycologia 84:589–592

    Article  CAS  Google Scholar 

  • Gargas A, Depriest PT, Grube M, Tehler A (1995) Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268:1492–1495

    Article  CAS  PubMed  Google Scholar 

  • Gazis R, Miadlikowska J, Lutzoni F, Arnold AE, Chaverri P (2012) Culture-based study of endophytes associated with rubber trees in Peru reveals a new class of Pezizomycotina: Xylonomycetes. Mol Phylogenet Evol 65:294–30

    Article  CAS  PubMed  Google Scholar 

  • Geiser DV, Gueidan C, Miadlikowska J, Lutzoni F, Kauff F, Hofstetter V, Fraker E, Schoch CL, Tibell L, Untereiner WA, Aptroot A (2006) Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia 98:1053–1064

    Article  PubMed  Google Scholar 

  • Golubic S, Friedmann EI, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Res 51:475–478

    Google Scholar 

  • Grube RBD (2002) Collemopsidium. In: Nash TH, Ryan BD, Gries C, Bungartz F (eds) Lichen flora of the Greater Sonoran Desert Region. Lichens Unlimited, Tempe, pp 1162–1164

    Google Scholar 

  • Grube M (2005) Frigidopyrenia: a new genus for a peculiar subarctic lichen, with notes on similar taxa. Phyton 45:305–318

    Google Scholar 

  • Grube M, Hafellner J (1990) Studien an flechtenbewohnenden Pilzen der Sammelgattung Didymella (Ascomycetes, Dothideales). Nova Hedwigia 51:283–360

    Google Scholar 

  • Gueidan C, Ruibal CV, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) An extremotolerant rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 62:111–119

    Article  Google Scholar 

  • Gueidan C, Ruibal C, de Hoog S, Schneider H (2011) Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996

    Article  PubMed  Google Scholar 

  • Gueidan C, Aptroot A, da Silva Cáceres ME, Badali H, Stenroos S (2014) A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota). Mycol Prog 13:1027–1039

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harris RC (1995) More Florida lichens. including the 10c Tour of the Pyrenolichens. Published by the author, Bronx

  • Hasegawa M, Kishino H, Yano TA (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (2015) Lichenization: the origins of a fungal life-style. In: Upreti DK, Divakar PK, Shukla V, Bajpai R (eds) Recent advances in lichenology. Springer, India, pp 1–10

    Chapter  Google Scholar 

  • Hawksworth DL, Eriksson OE (1988) Proposals to conserve 11 family names in the Ascomycotina (Fungi). Taxon 37:190–193

    Article  Google Scholar 

  • Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hofstetter V, Miadlikowska J, Kauff F, Lutzoni F (2007) Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: a case study of the Lecanoromycetes (Ascomycota). Mol Phylogenet Evol 44:412–426

    Article  CAS  PubMed  Google Scholar 

  • Honegger R (2012) The symbiotic phenotype of lichen-forming ascomycetes and their endo- and epibionts. In: Hock B (ed) The Mycota – a comprehensive treatise on fungi as experimental system for basic and applied research. Fungal association IX, 2nd edn. Springer, Berlin, pp 288–339

    Google Scholar 

  • Hug LA, Roger AJ (2007) The impact of fossils and taxon sampling on ancient molecular dating analyses. Mol Biol Evol 24:1889–1897

    Article  CAS  PubMed  Google Scholar 

  • Hyde KD, Jones EBG, Liu J-K et al (2013) Families of Dothideomycetes. Fungal Divers 63:1–313

    Article  Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795

    Article  Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauff F, Lutzoni F (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25:138–156

    Article  CAS  PubMed  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby’s dictionary of the fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  • Kohlmeyer J, Hawksworth D, Volkmann-Kohlmeyer B (2004) Observations on two marine and maritime “borderline” lichens: Mastodia tessellata and Collemopsidium pelvetiae. Mycol Progress 3:51–56

    Article  Google Scholar 

  • Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701

    Article  CAS  PubMed  Google Scholar 

  • Lange OL, Schulze E-D, Koch W (1970) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. III. CO2-Gaswechsel und Wasserhaushalt von Krusten- und Blattflechten am natürlichen Standort während der sommerlichen Trockenperiode. Flora 159:525–538

    Google Scholar 

  • Lartillot N, Philippe H (2006) Computing Bayes factors using thermodynamic integration. Syst Biol 55:195–207

    Article  PubMed  Google Scholar 

  • Le Campion-Alsumard T, Golubic S (1985) Hyella caespitosa Bornet et Flahault and Hyella balani Lehman (Pleurocapsales, Cyanophyta): a comparative study, Arch. Hydrobiol. Suppl. 71 (1/2). Algol Stud 38(39):119–148

    Google Scholar 

  • Leavitt SD, Esslinger TL, Lumbsch HT (2012a) Neogene-dominated diversification in neotropical montane lichens: dating divergence events in the lichen-forming fungal genus Oropogon (Parmeliaceae). Am J Bot 99:1764–1777

    Article  PubMed  Google Scholar 

  • Leavitt SD, Esslinger TL, Divakar PK, Lumbsch HT (2012b) Miocene 111Q09 divergence, phenotypically cryptic lineages, and contrasting distribution patterns in common lichen-forming fungi (Ascomycota: Parmeliaceae). Biol J Linn Soc 107:920–937

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 16:1799–1808

    Article  CAS  PubMed  Google Scholar 

  • Lücking R, Dal-Forno M, Sikaroodi M, Gillevet PM, Bungartz F, Moncada B, Yáñez-Ayabaca A, Chaves JL, Coca LF, Lawrey JD (2014) A single macrolichen constitutes hundreds of unrecognized species. Proc Natl Acad Sci U S A 111:11091–11096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lumbsch HT, Huhndorf SM (2010) Myconet volume 14, part two. notes on ascomycete systematics. nos. 4751–5113. Fieldiana: Life and Earth Sciences, N.S. 1:42–64

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    Article  CAS  PubMed  Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ et al (2004) Assembling the fungal tree of life: progress, classification and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  PubMed  Google Scholar 

  • Matheny PB, Liu YJ, Ammirati JF, Hall BD (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). Am J Bot 89:688–698

    Article  CAS  PubMed  Google Scholar 

  • McElwain JC, Punyasena SW (2007) Mass extinction events and the plant fossil record. Trends Ecol Evol 22:548–557

    Article  PubMed  Google Scholar 

  • McWilliam H, Li W, Uludag M et al (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:597–600

    Article  Google Scholar 

  • Miadlikowska J, Kauff F, Hofstetter V et al (2006) New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98:1088–1103

    Article  CAS  PubMed  Google Scholar 

  • Miadlikowska J, Kauff F, Högnabba F et al (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol Phylogenet Evol 79:132–168

    Article  PubMed  Google Scholar 

  • Millanes AM, Truong C, Westberg M, Diederich P, Wedin M (2014) Host switching promotes diversity in host-specialized mycoparasitic fungi: uncoupled evolution in the Biatoropsis-Usnea system. Evolution 68:1576–1593

    Article  CAS  PubMed  Google Scholar 

  • Mohr F, Ekman S, Heegaard E (2004) Evolution and taxonomy of the marine Collemopsidium species (lichenized Ascomycota) in north-west Europe. Mycol Res 108:515–532

    Article  PubMed  Google Scholar 

  • Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M, Inward DJG, Lees DC, Ranaivosolo R, Eggleton P, Barraclough TG, Vogler AP (2009) Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst Biol 58:298–311

    Article  CAS  PubMed  Google Scholar 

  • Moncalvo J-M, Rehner SA, Vilgalys R (1993) Systematics of Lyophyllum section Difformia based on evidence from culture studies and ribosomal DNA sequences. Mycologia 85:788–794

    Article  CAS  Google Scholar 

  • Moore D (2013) Fungal biology in the origin and emergence of life. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Moreno PP, Egea JM (1991) Biología y taxonomía de la familia Lichinaceae, con especial referencia a las especies del SE España y norte de Africa. Secretariado de Publicaciones, Universidad de Murcia

  • Myllys L, Lohtander K, Källersjö M, Tehler A (1999) Sequence insertions and ITS data provide congruent information on Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) phylogeny. Mol Phylogenet Evol 12:295–309

    Article  CAS  PubMed  Google Scholar 

  • Nimis PL (1993) The lichens of Italy. an annotated catalogue. Museo Regionale di Scienze Naturali, Monografia XII, Turin

    Google Scholar 

  • Nimis P, Zappa L (1988) I licheni endolitici calcicoli su monumenti. In: Nimis PL, Monte M (eds) Lichens and Monuments. Stud Geobot 8:125–133

  • Nordin A (2002) Collemopsidium angermannicum, a widespread but rarely collected aquatic lichen. Graphis Scripta 13:39–41

    Google Scholar 

  • Nylander W (1881) Addenda nova ad Lichenographiam europaeam. Contin XXXV Flora 64:2–8

    Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Ortega S, Ortiz-Álvarez R, Allan Green TG, de los Ríos A (2012) Lichen myco- and photobiont diversity and their relationships at the edge of life (McMurdo Dry Valleys, Antarctica). FEMS Microbiol Ecol 82:429–448

    Article  PubMed  CAS  Google Scholar 

  • Pinna D, Salvadori O, Tretiach M (1998) An anatomical investigation of calcicolous endolithic lichens from the Trieste karst (NE Italy). Plant Biosyst 132:183–195

    Article  Google Scholar 

  • Poelt J (1974) Classification. In: Ahmadjian V, Hale ME (eds) The lichens. Academic, New York, pp 599–630

    Google Scholar 

  • Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55: 595–609

  • Prieto M, Wedin M (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS ONE 8:e65576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieto M, Baloch E, Tehler A, Wedin M (2013) Mazaedium evolution in the Ascomycota (Fungi) and the classification of mazaediate groups of formerly unclear relationship. Cladistics 29:296–308

    Article  Google Scholar 

  • Rambaut A, Suchard MA, Drummond AJ (2014) Tracer v 1.6, available from: http://tree.bio.ed.ac.uk/software/tracer/Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98:625–634

    Google Scholar 

  • Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98:625–634

  • Renobales G (1996) Contribución al conocimiento de los líquenes calcícolas del occidente de Vizcaya y parte oriental de Cantabria (N-España). Guineana 2:1–310

    Google Scholar 

  • Rikkinen J (2003) Calicioid lichens from European Tertiary amber. Mycologia 95:1032–1036

    Article  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and Mocel Choide across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosling A, Cox F, Cruz-Martinez K et al (2011) Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:876–879

    Article  CAS  PubMed  Google Scholar 

  • Santesson R (1939) Amphibious pyrenolichens I. Arkiv för Botanik 29a(10):1–68

    Google Scholar 

  • Santesson R (1992) Pyrenocollema elegans, a new marine lichen. Lichenologist 24:7–11

    Article  Google Scholar 

  • Schmidt AR, Beimforde C, Seyfullah LJ et al (2014) Amber fossils of sooty moulds. Rev Palaeobot Palyno 200:53–64

    Article  Google Scholar 

  • Schoch CL, Wang Z, Townsend JP, Spatafora JW (2009a) Geoglossomycetes cl. nov., Geoglossales ord. nov. and taxa above class rank in the Ascomycota tree of life. Persoonia 22:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch CL, Sung GH, López-Giráldez F, Townsend JP, Miadlikowska J et al (2009b) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AL (1921) Lichens. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Smith CW, Aptroot A, Coppins BJ, Fletcher A, Gilbert OL, James PW, Wolseley PA (2009) The lichens of Great Britain and Ireland. British Lichen Society, London

    Google Scholar 

  • Spatafora JW, Johnson D, Sung G-H et al (2006) A five-gene phylogenetic analysis of the Pezizomycotina. Mycologia 98:1020–1030

    Article  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Stiller JW, Hall BD (1997) The origin of red algae: implications for plastid evolution. PNAS 94:4520–4525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swinscow TDV (1965) Pyrenocarpous lichens: 9. Lichenologist 3:72–83

    Article  Google Scholar 

  • Tavaré S (1986) Some probabilistic and statisical problems on the analysis of DNA sequences. Lect Math Life Sci 17:57–86

    Google Scholar 

  • Taylor TN, Hass H, Kerp H, Krings M, Hanlin RT (2005) Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism. Mycologia 97:269–285

    Article  CAS  PubMed  Google Scholar 

  • Tucker SC, Harris RC (1980) New or noteworthy pyrenocarpous lichens from Louisiana and Florida. Bryologist 83:1–20

    Article  Google Scholar 

  • van den Boom PPG (2010) New or interesting lichens and lichenicolous fungi of Gran Canaria (Canary Islands, Spain). Willdenowia 40:359–367

    Article  Google Scholar 

  • van den Boom P, Etayo J (2014) New records of lichenicolous fungi and lichenicolous lichens from the Iberian Peninsula, with the description of four new species and one new genus. Opusc Philolichenum 13:44–79

    Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villesen P (2007) FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 7:965–968

    Article  CAS  Google Scholar 

  • Visscher H, Brinkhuis H, Dilcher DL, Elsik WC, Eshet Y, Looy CV, Rampino MR, Traverse A (1996) The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. PNAS 93:2155–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson W (1929) The classification of lichens. New Phytol 28:85–116

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In: Innis MA, Gelfand DH, White JJSJ (eds) PCR protocols. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wierzchos J, Ascaso C (1994) Application of back-scattered electron imaging to the study of the lichen-rock interface. J Microsc 175:54–59

    Article  Google Scholar 

  • Xie W, Lewis PO, Fan Y, Kuo L, Chen MH (2010) Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol 60:150–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahlbruckner A (1926) Lichenes (Flechten). B. Spezieller Teil. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien, vol 8, 2nd edn. W Engelmann, Leipzig, pp 61–270

    Google Scholar 

  • Zharkikh A (1994) Estimation of evolutionary distances between nucleotide sequences. J Mol Evol 39:315–329

    Article  CAS  PubMed  Google Scholar 

  • Zoller S, Scheidegger C, Sperisen C (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31:511–516

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Javier Etayo (Navarra), Victor J. Rico (Madrid), Mercedes Vivas (Concepción), María Arróniz-Crespo (Madrid), Cécile Gueidan (Canberra) for collecting fresh specimens, Toby Spribille (Graz), Alan Orange (Cardiff) and Karen Dillman (Petersburg) for assistance during field work, María José Malo (Madrid) for her help with lab work and Ana Burton for improving English. SPO, IGB and AdR were supported by grant CTM2012-38222-C02-02, IGB was supported by grant FPU AP2012-3556, SPO is currently supported by the grant RYC-2014-16784, all from the Spanish Ministry of Economy and Competitiveness. We also thank the staff of the microscopy facility of the ICA (CSIC, Madrid) for technical assistance and the three anonymous reviewers for their suggestions and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Pérez-Ortega.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Table 1

Specimen information and accession numbers for the Xanthopyreniaceae material used in the phylogenetic designations. (DOCX 16 kb)

Suppl. Table 2

Specimen information and accession numbers for the marine Collemopsidium specimens. (DOC 240 kb)

Suppl. Table 3

Accession numbers for the Ascomycota dataset (AC). (DOC 128 kb)

Suppl. Table 4

Accession numbers for the Dothideomyceta dataset (DO). (DOCX 30 kb)

Suppl. Table 5

Nodes and divergences times (DOC 41 kb)

Suppl. Fig. 1

Six-locus phylogeny (50 % majority rule consensus tree) depicting phylogenetic relationships among clades of Dothideomyceta including species of Xanthopyreniaceae (Collemopsidiales). Filled in circles on branches indicate Bayesian posterior probability (PP) ≥ 95 % and ML bootstrap values (B) ≥ 70 %. Left filled circles represent only PP support. Right filled circles represent only ML bootstrap support. Members of the Dothideomyceta are indicated in colour: red for Dothiodeomycetes, green for Arthoniomycetes and blue for Xanthopyreniaceae (Collemopsidiales). (GIF 116 kb)

High resolution image (TIF 25136 kb)

Suppl. Fig. 2

Maximum clade credibility (MCC) cartoon tree with divergence times estimates for main clades of Ascomycota. Estimates were obtained using a Bayesian approach (BEAST) and five fossil calibration points. Bars correspond to 95 % highest posterior density intervals (HPD). Filled in circles on branches indicate Bayesian posterior probability (PP) ≥ 95 %. Estimated ages (median and HPD) for the nodes (1-12) are available in Suppl. Table 5. Abbreviations for geologic periods read as follow: Cam. = Cambrian, Ord. = Ordovician, Sil. = Silurian, Dev. = Devonian, Carb. = Carboniferous, Perm. = Permian, Trias. = Triassic; Jura. = Jurassic, Cenoz. = Cenozoic. (GIF 194 kb)

High resolution image (TIF 506 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Ortega, S., Garrido-Benavent, I., Grube, M. et al. Hidden diversity of marine borderline lichens and a new order of fungi: Collemopsidiales (Dothideomyceta). Fungal Diversity 80, 285–300 (2016). https://doi.org/10.1007/s13225-016-0361-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-016-0361-1

Keywords

Navigation