Skip to main content
Log in

Selection and evaluation of functional characteristics of autochthonous lactic acid bacteria isolated from traditional fermented stinky bean (Sataw-Dong)

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the technological and functional potential of lactic acid bacteria (LAB) isolated from fermented stinky bean (Sataw-Dong). Of the 114 LAB colonies isolated from spontaneously fermented stinky bean which showed inhibitory activity against two food-borne pathogens (Staphylococcus aureus DMST 4480 and Escherichia coli DMST 4212), the five isolates (KJ03, KJ15, KJ17, KJ22, KJ23) exhibiting excellent antagonistic activity were subjected to further study. These five strains showed titratable acidity as lactic acid in the range of 1.47–1.55 %, with strains KJ03 and KJ23 additionally exhibiting a high NaCl tolerance of >7 % (w/v). Using 16S rRNA gene sequence analysis, strains KJ03 and KJ23 were identified as Lactobacillus plantarum and L. fermentum, respectively, and further investigated for their functional properties in vitro. Both strains survived well in a simulated gastrointestinal tract environment with <1 log cell decrease over 8 h (>8 log CFU/ml). Lactobacillus plantarum KJ03 showed the best performance with respect to cholesterol removal (53 %), while L. fermentum KJ23 showed the highest cell-surface hydrophobicity (39.5 %). Neither of the two strains showed any hemolysis activity. Both strains hydrolyzed glycodeoxycholic and taurodeoxycholic acids. In terms of antibiotic susceptibility, L. fermentum KJ23 was not sensitive to tetracycline. Taking all of the results into account, L. plantarum KJ03 possessed desirable in vitro functional properties. This strain is therefore a good candidate for further investigation for use in Sataw-Dong fermentation to assess its technological performance as a potential probiotic starter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aisha AF, Abu-Salah KM, Alrokayan SA et al (2012) Evaluation of antiangiogenic and antioxidant properties of Parkia speciose Hassk extracts. Pak J Pharm Sci 25:7–14

    CAS  PubMed  Google Scholar 

  • Ali H, Houghton PJ, Soumyanath A (2006) α-Amylase activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J Ethnopharmacol 107:449–455

    Article  PubMed  Google Scholar 

  • Aloys N, Angeline N (2009) Traditional fermented foods and beverages in Burundi. Food Res Int 42:588–594

    Article  CAS  Google Scholar 

  • Ammor MS, Mayo B (2007) Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci 76:138–146

    Article  CAS  PubMed  Google Scholar 

  • Ammor MS, Belén Flórez A, Mayo B (2007) Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24:559–570

    Article  CAS  PubMed  Google Scholar 

  • Bayerdörffer E, Mannes GA, Ochsenkühn T et al (1995) Unconjugated secondary bile acids in the serum of patients with colorectal adenomas. Gut 36:268–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Begonović J, Kos B, Labos Pavunc A et al (2014) Traditionally produced sauerkraut as source of autochthonous functional starter cultures. Microbiol Res 169:623–632

    Article  Google Scholar 

  • Ben Omar N, Castro A, Lucas R, et al (2004) Functional and safety aspects of Enterococci isolated from different Spanish foods. Syst Appl Microbiol 27:118–130.

  • Cai Y, Benno Y, Ogawa M, Kumai S (1999) Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage. J Dairy Sci 82:520–526

    Article  CAS  PubMed  Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149

    Article  CAS  PubMed  Google Scholar 

  • Cebeci A, Gurakan C (2003) Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol 20:511–518

    Article  Google Scholar 

  • Choi EA, Chang HC (2015) Cholesterol-lowering effects of a putative probiotic strain Lactobacillus plantarum EM isolated from kimchi. LWT-Food Sci Technol 62:210–217

    Article  CAS  Google Scholar 

  • Cunningham FE, Proctor VA, Goetsch SJ (1991) Egg-white lysozyme as a food preservative: an overview. World Poult Sci J 47:141–163

  • Danielsen M, Wind A (2003) Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol 82:1–11

    Article  CAS  PubMed  Google Scholar 

  • Dewan S, Tamang JP (2007) Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products. Antonie Van Leeuwenhoek 92:343–352

    Article  CAS  PubMed  Google Scholar 

  • Du Toit M, Franz CM, Dicks LM et al (1998) Characterisation and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. Int J Food Microbiol 40:93–104

    Article  PubMed  Google Scholar 

  • Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Food Safety Authority (2012) Scientific opinion on Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2470

    Google Scholar 

  • Federici S, Ciarrocchi F, Campana R et al (2014) Identification and functional traits of lactic acid bacteria isolated from Ciauscolo salami produced in Central Italy. Meat Sci 98:575–584

    Article  CAS  PubMed  Google Scholar 

  • Font de Valdez G, de Giori GS, Garro M, Mozzi F, Oliver G (1990) Lactic acid bacteria from naturally fermented vegetables. Microbiol Alim Nutr 8:175–179

    Google Scholar 

  • Fukushima M, Fujii S, Yoshimura Y et al (1999) Effect of rice bran on intraintestinal fermentation and cholesterol metabolism in cecectomized rats. Nutr Res 19:235–245

    Article  CAS  Google Scholar 

  • González L, Sandoval H, Sacristán N et al (2007) Identification of lactic acid bacteria isolated from Genestoso cheese throughout ripening and study of their antimicrobial activity. Food Control 18:716–722

    Article  Google Scholar 

  • Gotcheva V, Hristozova E, Hristozova T et al (2002) Assessment of potential probiotic properties of lactic acid bacteria and yeast strains. Food Biotechnol 16:211–225

    Article  Google Scholar 

  • Granato D, Branco GF, Nazzaro F et al (2010) Functional foods and nondairy probiotic food development: trends, concepts, and products. Compr Rev Food Sci Food Saf 9:292–302

    Article  CAS  Google Scholar 

  • Guo X-H, Kim J-M, Nam H-M et al (2010) Screening lactic acid bacteria from swine origins for multistrain probiotics based on in vitro functional properties. Anaerobe 16:321–326

    Article  PubMed  Google Scholar 

  • Guo C-F, Zhang S, Yuan Y-H et al (2015) Comparison of lactobacilli isolated from Chinese suan-tsai and koumiss for their probiotic and functional properties. J Funct Foods 12:294–302

    Article  CAS  Google Scholar 

  • Hargrove RE, Alford JA (1978) Growth rate and feed efficiency of rats fed yogurt and other fermented milks. J Dairy Sci 61:11–19

    Article  Google Scholar 

  • Hill MJ (1990) Bile flow and colon cancer. Mutat Res 238:313–320

    Article  CAS  PubMed  Google Scholar 

  • Hofvendahl K, Hahn–Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources1. Enzyme Microb Technol 26:87–107

    Article  CAS  PubMed  Google Scholar 

  • Hwanhlem N, Buradaleng S, Wattanachant S et al (2011) Isolation and screening of lactic acid bacteria from Thai traditional fermented fish (Plasom) and production of Plasom from selected strains. Food Control 22:401–407

    Article  CAS  Google Scholar 

  • Jamaluddin F, Mohamad S (1993) Hypoglycemic effect of extracts of petai papan (Parkia speciosa, Hassk). Pertanika J Trop Agric Sci 16:161–165

    Google Scholar 

  • Jamaly N, Benjouad A, Bouksaim M (2011) Probiotic potential of Lactobacillus strains isolated from known popular traditional Moroccan dairy products. Br Microbiol Res J 2011:79–94

    Article  Google Scholar 

  • Jones RJ, Hussein HM, Zagorec M et al (2008) Isolation of lactic acid bacteria with inhibitory activity against pathogens and spoilage organisms associated with fresh meat. Food Microbiol 25:228–234

    Article  CAS  PubMed  Google Scholar 

  • Kiely LJ, Olson NF (2000) The physicochemical surface characteristics of Lactobacillus casei. Food Microbiol 17:277–291

    Article  CAS  Google Scholar 

  • Klaver FA, van der Meer R (1993) The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl Environ Microbiol 59:1120–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Nagpal R, Kumar R et al (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res 2012:902–917

    Article  Google Scholar 

  • Leroy F, de Vuyst L (1999) The presence of salt and a curing agent reduces bacteriocin production by Lactobacillus sakei CTC 494, a potential starter culture for sausage fermentation. Appl Environ Microbiol 65:5350–5356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lingani HS, Diawara B, Traore AS et al (2008) Technological properties of Lactobacillus fermentum involved in the processing of dolo and pito, West African sorghum beers, for the selection of starter cultures. J Appl Microbiol 104:873–882

    Article  Google Scholar 

  • Mann GV, Spoerry A (1974) Studies of a surfactant and cholesteremia in the Maasai. Am J Clin Nutr 27:464–469

    CAS  PubMed  Google Scholar 

  • Maragkoudakis PA, Zoumpopoulou G, Miaris C et al (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16:189–199

    Article  CAS  Google Scholar 

  • Martins EMF, Ramos AM, Vanzela ESL et al (2013) Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Res Int 51:764–770

    Article  CAS  Google Scholar 

  • Montet D, Loiseau G, Zakhia-Rozis N (2006) Microbial technology of fermented vegetables. In: Ray RC, Ward OP (eds) Microbial biotechnology in horticulture. Science Publishers, Enfield, pp 309–343

    Google Scholar 

  • Moraes PM, Perlin LM, Todorov SD et al (2012) Bacteriocinogenic and virulence potential of Enterococcus isolates obtained from raw milk and cheese. J Appl Microbiol 113:318–328

    Article  CAS  PubMed  Google Scholar 

  • Nazzaro F, Fratianni F, Orlando P, Coppola R (2012) Biochemical traits, survival and biology properties of the probiotic Lactobacillus plantarum grown in the presence of prebiotic inulin and pectin as energy source. Pharmacy 5:481–492

    CAS  Google Scholar 

  • Otero MC, Ocaña VS, Elena Nader-Macías M (2004) Bacterial surface characteristics applied to selection of probiotic microorganisms. Methods Mol Biol 268:435–440

    PubMed  Google Scholar 

  • Parkouda C, Thorsen L, Compaore CS et al (2010) Microorganisms associated with Maari, a Baobab seed fermented product. Intl J Food Microbiol 142:292–301

    Article  Google Scholar 

  • Ponce AG, Moreira MR, del Valle CE, Roura SI (2008) Preliminary characterization of bacteriocin-like substances from lactic acid bacteria isolated from organic leafy vegetables. LWT-Food Sci Technol 41:432–441

    Article  CAS  Google Scholar 

  • Reynolds PE (1989) Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 8:943–950

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Espinoza Y, Gallardo-Navorra Y (2010) Non-dairy probiotic products. Food Microbiol 27:1–11

    Article  PubMed  Google Scholar 

  • Rubio R, Jofré A, Martín B et al (2014) Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbiol 38:303–311

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Moyano S, Martín A, Benito MJ et al (2009) Safety and functional aspects of pre-selected lactobacilli for probiotic use in Iberian dry-fermented sausages. Meat Sci 83:460–467

    Article  CAS  PubMed  Google Scholar 

  • Sakunpak A, Panichayupakaranant P (2012) Antibacterial activity of Thai edible plants against gastrointestinal pathogenic bacteria and isolation of a new broad spectrum antibacterial polyisoprenylated benzophenone, chamuangone. Food Chem 130:826–831

    Article  CAS  Google Scholar 

  • Scientific Committee for Animal Nutrition (2002) Opinion of scientific committee on animal nutrition on the criteria for assessing the safety of microorganisms resistant to antibiotics of human clinical and veterinary importance. European commission Health and consumer. Protection Directorate General

  • Schillinger U, Lücke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Semedo T, Santos MA, Lopes MFS, et al (2003) Virulence factors in food, clinical and reference Enterococci: A common trait in the genus? Syst Appl Microbiol 26:13–22.

  • Smetankova J, Hladikova Z, Valach F et al (2012) Influence of aerobic and anaerobic conditions on the growth and metabolism of selected strains of Lactobacillus plantarum. Acta Chir Slov 5:204–210

    Google Scholar 

  • Srinu B, Rao TM, Reddy PVM, Reddy KK (2013) Evaluation of different lactic acid bacterial strains for probiotic characteristics. Vet World 6:785–788

    Article  Google Scholar 

  • Swain MR, Anandharaj M, Ray RC, Rani RP (2014) Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnol Res Int 2014:250424

    Article  PubMed  PubMed Central  Google Scholar 

  • Talwalkar A, Kailasapathy K (2003) Metabolic and biochemical responses of probiotic bacteria to oxygen. J Dairy Sci 86:2537–2546

    Article  CAS  PubMed  Google Scholar 

  • Talwalkar A, Kailasapathy K, Peiris P, Arumugaswamy R (2001) Application of RBGR-a simple way for screening of oxygen tolerance in probiotic bacteria. Int J Food Microbiol 71:245–248

    Article  CAS  PubMed  Google Scholar 

  • Turchi B, Mancini S, Fratini F et al (2013) Preliminary evaluation of probiotic potential of Lactobacillus plantarum strains isolated from Italian food products. World J Microbiol Biotechnol 29:1913–1922

    Article  PubMed  Google Scholar 

  • Vankerckhoven V, Van Autgaerden T, Vael C et al (2004) Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol 42:4473–4479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuyst LD, Falony G, Leroy F (2008) Probiotics in fermented sausages. Meat Sci 80:75–78

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zeng X, Mo Y et al (2012) Identification and characterization of a bile Salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters. Appl Environ Microbiol 78:8795–8802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SC, Chang CK, Chan SC et al (2014) Effects of lactic acid bacteria isolated from fermented mustard on lowering cholesterol. Asian Pac J Trop Biomed 4:523–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zago M, Fornasari ME, Carminati D et al (2011) Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol 28:1033–1040

    Article  CAS  PubMed  Google Scholar 

  • Zielińska D, Rzepkowska A, Radawska A, Zieliński K (2015) In vitro screening of selected probiotic properties of Lactobacillus strains isolated from traditional fermented cabbage and cucumber. Curr Microbiol 70:183–194

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0049/2554) and the Graduate School of Prince of Songkla University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suppasil Maneerat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jampaphaeng, K., Cocolin, L. & Maneerat, S. Selection and evaluation of functional characteristics of autochthonous lactic acid bacteria isolated from traditional fermented stinky bean (Sataw-Dong). Ann Microbiol 67, 25–36 (2017). https://doi.org/10.1007/s13213-016-1233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-016-1233-3

Keywords

Navigation