Skip to main content
Log in

The gut microbiota of the wood-feeding termite Reticulitermes lucifugus (Isoptera; Rhinotermitidae)

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Termite gut is host to a complex microbial community consisting of prokaryotes, and in some cases flagellates, responsible for the degradation of lignocellulosic material. Here we report data concerning the analysis of the gut microbiota of Reticulitermes lucifugus (Rossi), a lower termite species that lives in underground environments and is widespread in Italy, where it causes damage to wood structures of historical and artistic monuments. A 16S rRNA gene clone library revealed that the R. lucifugus gut is colonized by members of five phyla in the domain Bacteria: Firmicutes (49 % of clones), Proteobacteria (24 %), Spirochaetes (14 %), the candidatus TG1 phylum (12 %), and Bacteroidetes (1 %). A collection of cellulolytic aerobic bacteria was isolated from the gut of R. lucifugus by enrichment cultures on different cellulose and lignocellulose substrates. Results showed that the largest amount of culturable cellulolytic bacteria of R. lucifugus belongs to Firmicutes in the genera Bacillus and Paenibacillus (67 %). These isolates are also able to grow on xylan and show the largest clear zone diameter in the Congo red test. Reticulitermes lucifugus hosts a diverse community of bacteria and could be considered an acceptable source of hydrolytic enzymes for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams L, Boopathy R (2005) Isolation and characterization of enteric bacteria from the hindgut of Formosan termite. Bioresour Technol 96:1592–8

    Article  PubMed  CAS  Google Scholar 

  • Aylward FO, McDonald BR, Adams SM, Valenzuela A, Schmidt RA, Goodwin LA, Woyke T, Currie CR, Suen G, Poulsen M (2013) Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 79:3724–33. doi:10.1128/AEM.00518-13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bandi C, Sironi M, Nalepa CA, Corona S, Sacchi L (1997) Phylogenetically distant intracellular symbionts in termites. Parassitologia 39:71–5

    PubMed  CAS  Google Scholar 

  • Beloqui A, Nechitaylo TY, López-Cortés N, Ghazi A, Guazzaroni ME, Polaina J, Strittmatter AW, Reva O, Waliczek A, Yakimov MM, Golyshina OV, Ferrer M, Golyshin PN (2010) Diversity of glycosyl hydrolases from cellulose-depleting communities enriched from casts of two earthworm species. Appl Environ Microbiol 76:5934–46

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boucias DG, Yunpeng CAI, Yijun S, Verena-Ulrike L (2013) The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol Ecol 22:1836–1853

    Article  PubMed  CAS  Google Scholar 

  • Brune A, Stingl U (2006) Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. In: Overmann J (ed) Molecular Basis of Symbiosis. Springer, Berlin, pp 39–60

    Chapter  Google Scholar 

  • Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–80

    Article  PubMed  CAS  Google Scholar 

  • Cacciari I, Quatrini P (2002) I gruppi fisiologici del ciclo del carbonio. In: “Metodi di analisi microbiologica del suolo” G Picci e P Nannipieri (coord.). Ministero delle politiche agricole e forestali, Soc. Ital. Scienza del Suolo. Franco Angeli Ed. Parte III, 9 pp.74-75

  • Chang P, Tsai WS, Tsai CL, Tseng MJ (2004) Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firmus. Biochem Biophys Res Commun 319:1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Chai L, Tang C, Yang Z, Zheng Y, Shi Y, Zhang H (2012) Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process. Bioresource Technol 123:682–685

    Article  CAS  Google Scholar 

  • Chou JH, Sheu SY, Lin KY, Chen WM, Arun AB, Young CC (2007) Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus. Int J Syst Evol Microbiol 57:887–91

    Article  PubMed  CAS  Google Scholar 

  • Graber JR, Leadbetter JR, Breznak JAW (2004) Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochaetes isolated from termite guts. Appl Environ Microbiol 70:1315–1320

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–42. doi:10.1016/S0168-6496(03)00026-6

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Deevong P, Hattori S, Inoue T, Noda S, Noparatnaraporn N, Kudo T, Ohkuma M (2006) Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 72:6780–6788

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2008) Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc Natl Acad Sci U S A 105(14):5555–60. doi:10.1073/pnas.0801389105

    Article  PubMed Central  PubMed  Google Scholar 

  • Hongoh Y (2011) Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 68:1311–25

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed Central  PubMed  CAS  Google Scholar 

  • Husseneder C, Ho H-Y, Blackwell M (2010) Comparison of the bacterial symbiont composition of the Formosan subterranean termite from its native and introduced range. Open J Microbiol 4:53–66

    Article  CAS  Google Scholar 

  • Ikeda-Ohtsubo W, Desai M, Stingl U, Brune A (2007) Phylogenetic diversity of “Endomicrobia” and their specific affiliation with termite gut flagellates. Microbiology 153:3458–3465

    Article  PubMed  CAS  Google Scholar 

  • Ikeda-Ohtsubo W, Brune A (2009) Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and “Candidatus Endomicrobium trichonymphae”. Mol Ecol 18:332–342

  • Köhler T, Dietrich C, Scheffrahn RH, Brune A (2012) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78:4691–701

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Konig H (2006) Bacillus species in the intestine of termites and other soil invertebrates. J Appl Microbiol 101:620–627

    Article  PubMed  CAS  Google Scholar 

  • Lämmle K, Zipper H, Breuer M, Hauer B, Buta C, Brunner H, Rupp S (2007) Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning. J Biotechnol 127:575–92

    Article  PubMed  CAS  Google Scholar 

  • Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–9

    Article  PubMed  CAS  Google Scholar 

  • Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345

    Article  PubMed  CAS  Google Scholar 

  • Liotta G (1991) Gli insetti e i danni del legno. Collana: Arte e Restauro Strumenti. Nardini Editore.

  • Liotta G (2005) Termites that deteriorate wooden structures in cultural heritage. Conservation of historic wooden structures: proceedings of the international conference, Florence 22-27 February, 2005. Voll. 1 and 2

  • Lucey KS, Leadbetter JR (2014) Catechol 2,3-dioxygenase and other meta-cleavage catabolic pathway genes in the ‘anaerobic' termite gut spirochete Treponema primitia. Mol Ecol 23:1531–43

    Article  PubMed  CAS  Google Scholar 

  • Luchetti A, Scicchitano V, Mantovani B (2013) Origin and evolution of the Italian subterranean termite Reticulitermes lucifugus (Blattodea, Termitoidae, Rhinotermitidae). Bull Entomol Res 103:734–41

    Article  PubMed  CAS  Google Scholar 

  • Miyata R, Noda N, Tamaki H, Kinjyo K, Aoyagi H, Uchiyama H, Tanaka H (2007) Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotechnol Biochem 71:1244–51

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H, Hongoh Y, Noda S, Yoshida Y, Usami R, Kudo T, Ohkuma M (2006) Phylogenetic and morphological diversity of Bacteroidales members associated with the gut wall of termites. Biosci Biotechnol Biochem 70:211–218

    Article  PubMed  CAS  Google Scholar 

  • Ni J, Tokuda G (2013) Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31:838–50

    Article  PubMed  CAS  Google Scholar 

  • Noda S, Iida T, Kitade O, Nakajima H, Kudo T, Ohkuma M (2005) Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite Coptotermes formosanus. Appl Environ Microbiol 71:8811–8817

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Noda S, Inoue T, Hongoh Y, Kawai M, Nalepa CA, Vongkaluang C et al (2006) Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 8:11–20

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Noda S, Usami R, Horikoshi K, Kudo T (1996) Diversity of Nitrogen Fixation Genes in the Symbiotic Intestinal Microflora of the Termite Reticulitermes speratus. Appl Environ Microbiol 62:2747–52

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ohkuma M (2001) Symbiosis within the gut microbial community of termites. RIKEN Rev 41:69–72

    Google Scholar 

  • Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Sato T, Noda S, Ui S, Kudo T, Hongoh Y (2007) The candidate phylum “Termite Group 1” of bacteria: Phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol Ecol 60:467–476

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–52

    Article  PubMed  CAS  Google Scholar 

  • Okeke BC, Lu J (2011) Characterization of a Defined Cellulolytic and Xylanolytic Bacterial Consortium for Bioprocessing of Cellulose and Hemicelluloses. Appl Biochem Biotechnol 163:869–881

    Article  PubMed  CAS  Google Scholar 

  • Paster BJ, Dewhirst FE, Cooke SM, Fussing V, Poulsen LK, Breznak JA (1996) Phylogeny of not-yet-cultured spirochaetes from termite guts. Appl Environ Microbiol 62:347–352

    PubMed Central  PubMed  CAS  Google Scholar 

  • Perdereau E, Dedeine F, Christides JP, Dupont S, Bagnères AG (2011) Competition between invasive and indigenous species: an insular case study of subterranean termites. Biol Invasions 13:1457–1470

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning, a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sato T, Hongoh Y, Noda S, Hattori S, Ui S, Ohkuma M (2009) Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ Microbiol 11:1007–15. doi:10.1111/j.1462-2920.2008.01827.x

    Article  PubMed  Google Scholar 

  • Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003) Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soilfeeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6007–6017

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2007) Phylogenetic Analysis of the Gut Bacterial Microflora of the Fungus-Growing Termite Odontotermes formosanus. Biosci Biotechnol Biochem 71:906–915

    Article  PubMed  CAS  Google Scholar 

  • Talia P, Sede SM, Campos E, Rorig M, Principi D, Tosto D, Hopp HE, Grasso D, Cataldi A (2012) Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Res Microbiol 163:221–32. doi:10.1016/j.resmic.2011.12.001

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Watanabe H, Hojo M, Fujita A, Makiya H, Miyagi M, Arakawa G, Arioka M (2012) Cellulolytic environment in the midgut of the wood-feeding higher termite Nasutitermes takasagoensis. J Insect Physiol 58:147–54. doi:10.1016/j.jinsphys.2011.10.012

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Tsuboi Y, Kihara K, Saitou S, Moriya S, Lo N, Kikuchi J (2014) Metabolomic profiling of 13C-labelled cellulose digestion in a lower termite: insights into gut symbiont function. Proc Biol Sci 281:20140990. doi:10.1098/rspb.2014.0990

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tseng Y, Ratanakhanokchai K, Shui-Tein C (2001) Purification and characterization of two cellulase free xylanases from an alkaliphilic Bacillus firmus. Enzyme Microb Technol 30:590–595

    Article  Google Scholar 

  • Varrica G (2004) “ Le tèrmiti in ambiente urbano: riflessi sul patrimonio culturale e studi comportamentali”. PhD thesis. University of Palermo

  • Wang CM, Shyu CL, Ho SP, Chiou SH (2008) Characterization of a novel thermophilic, cellulose degrading bacterium Paenibacillus sp. strain B39. Lett Appl Microbiol 47:46–53

    Article  PubMed  CAS  Google Scholar 

  • Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  PubMed  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 697-703.

  • Wenzel M, Schoönig I, Berchtold M, Kämpfer P, König H (2002a) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol 92:32–40

    Article  PubMed  CAS  Google Scholar 

  • Wenzel M, Radek R, Brugerolle G, König H (2002b) Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur J Protistol 39:11–23

    Article  Google Scholar 

  • Yang H, Schmitt-Wagner D, Stingl U, Brune A (2005) Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol 7:916–932

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank G. Varrica for insect collection and dissections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Quatrini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Phylogenetic affiliation, isolation and degradation abilities of cellulolytic bacteria isolated from R. lucifugus gut a Phylogenetic affiliation obtained by the naïve Bayesian rRNA classifier version 2.4, Ribosomal Database Project II (RDP). bSequence similarity according to BLAST search in the NCBI non-redundant database. cSubstrate used for isolation from enrichment cultures.dCMC degradation measured on Medium 2 as diameter size of the clear zone: <1 cm = +; 1 cm = + +; > 1 cm = + + + (average of two replicates) (XLS 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butera, G., Ferraro, C., Alonzo, G. et al. The gut microbiota of the wood-feeding termite Reticulitermes lucifugus (Isoptera; Rhinotermitidae). Ann Microbiol 66, 253–260 (2016). https://doi.org/10.1007/s13213-015-1101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1101-6

Keywords

Navigation