Skip to main content
Log in

Colonization and molecular diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin (West Africa): an exploratory study

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal symbiosis is an important plant root–fungal partnership/interaction that affects the growth response of crops. We have investigated the molecular diversity of arbuscular mycorrhizal fungi (AMF) colonizing cowpea roots and the associated rhizosphere soil to test the hypothesis that community diversity in rhizosphere soil is similar to that in cowpea (Vigna unguiculata) roots. Cowpea plants were grown in farmers’ fields located in seven agro-ecological zones of Benin, and soil and root samples were collected. The molecular diversity of the AMF in these samples was assessed after amplification of the large ribosomal subunit of DNA extracted from the soil and the root samples. At fruition, the frequency of mycorrhizal infection was unaffected by the agro-ecological zone, but there were significant differences in the intensity of AMF colonization among the zones. Multiple regression analysis showed that the main factor affecting mycorrhizal frequency at flowering was available phosphorus. Phylogenetic analysis revealed 25 operational taxonomic units belonging to two fungal families (Glomeraceae and Gigasporaceae). The diversity of AMF colonizing roots of cowpea in Benin was high and fairly similar to that in the rhizosphere soil but with a prevalence of the Glomeraceae. Despite the absence of strict host specificity in mycorrhizal symbiosis, there was a preferential association between some AMF species and cowpea cultivar IT96D-610.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abate T, Alene AD, Bergvinson D, Shiferaw B, Silim S, Orr, A, Asfaw S (2011) Tropical grain legumes in Africa and South Asia: Knowledge and opportunities. TL II Research Report N°1. ICRISAT, Nairobi

  • Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Article  Google Scholar 

  • Bedini S, Pellegrino E, Avio L, Pellegrin S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496

    Article  CAS  Google Scholar 

  • Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience 51:923–932

    Article  Google Scholar 

  • Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Domínguez L, Sérsic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419:389–392

    Article  PubMed  CAS  Google Scholar 

  • Binet MN, Sage L, Malan C, Clément JC, Redecker D, Wipf D, Geremia RA, Lavorel S, Mouhamadou B (2013) Effects of mowing on fungal endophytes and arbuscular mycorrhizal fungi in subalpine grasslands. Fungal Ecol 6:248–255

    Article  Google Scholar 

  • Branco S, Bruns TD, Singleton I (2013) Fungi at a small scale: spatial zonation of fungal assemblages around single trees. PLoS ONE 8(10):e78295. doi:10.1371/journal.pone.0078295

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brito I, Goss MJ, de Carvalho M, Chatagnier O, van Tuinen D (2012) Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions. Soil Tillage Res 121:63–67

    Article  Google Scholar 

  • Bruce A, Smith SE, Tester M (1994) The development of mycorrhizal infection in cucumber—effects of P-supply on root-growth, formation of entry points and growth of infection units. New Phytol 127:507–514

    Article  Google Scholar 

  • Castillo CG, Rubio R, Rouanet JL, Borie F (2006) Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an Ultisol. Biol Fertil Soils 43:83–92

    Article  Google Scholar 

  • Cesaro P, van Tuinen D, Copetta A, Chatagnier O, Berta G, Gianinazzi S, Lingua G (2008) Preferential colonization of Solanum tuberosum L. roots by the fungus Glomus intraradices in arable soil of a potato farming area. Appl Environ Microbiol 74:5776–5783

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chao A (1987) Estimating the population-size for capture recapture data with unequal catchability. Biometrics 43:783–791

    Article  PubMed  CAS  Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  • Chen Y, Yuan J-G, Yang Z-Y, Xin G-R, Fan L (2008) Associations between arbuscular mycorrhizal fungi and Rhynchrelyrum repens in abandoned quarries in southern China. Plant Soil 304:257–266

    Article  CAS  Google Scholar 

  • Cho K, Toler H, Lee J, Ownley B, Stutz JC, Moore JL, Augé RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163:517–528

    Article  PubMed  CAS  Google Scholar 

  • Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9.0. User’s Guide and application. Available at: http://purl.oclc.org/estimates

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. philosophical transactions of the royal society of London. Ser B Biol Sci 345:101–118

    Article  CAS  Google Scholar 

  • Cuenca G, Meneses E (1996) Diversity patterns of arbuscular mycorrhizal fungi associated with cacao in Venezuela. Plant Soil 183:315–322

    Article  CAS  Google Scholar 

  • Douds D Jr, Nagahashi G, Wilson D, Moyer J (2011) Monitoring the decline in AM fungus populations and efficacy during a long term bare fallow. Plant Soil 342:319–326

    Article  CAS  Google Scholar 

  • Ellenberg H (1956) Grundlagen der Vegetationsgliederung, vol. 4: Aufgaben und Metoden der Vegtationskunde. E. Ulmer, Stuttgart

  • Farmer MJ, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, van Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol 35:599–609

    Article  Google Scholar 

  • Franke T, Beenken L, Doring M, Kocyan A, Agerer R (2006) Arbuscular mycorrhizal fungi of the Glomus-group A lineage (Glomerales; Glomeromycota) detected in myco-heterotrophic plants from tropical Africa. Mycol Prog 5:24–31

    Article  Google Scholar 

  • Gai JP, Christie P, Cai XB, Fan JQ, Zhang JL, Feng G, Li XL (2009) Occurrence and distribution of arbuscular mycorrhizal fungal species in three types of grassland community of the Tibetan Plateau. Ecol Res 24:1345–1350

    Article  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):art. 4

  • Hao Z, Fayolle L, van Tuinen D, Gianinazzi-Pearson V, Gianinazzi S (2009) Mycorrhiza reduce development of nematode vector of Grapevine fan leaf virus in soils and root systems. In: Boudon-Padfieu (ed) Extended abstract 16th meeting of ICVG, Dijon, France, p 100–1001

  • Hao Z, Fayolle L, van Tuinen D, Chatagnier O, Li X, Gianinazzi S, Gianinazzi-Pearson V (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. J Exp Bot 63:3657–3672

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389

    Article  PubMed  CAS  Google Scholar 

  • Hawley GL, Dames JF (2004) Mycorrhizal status of indigenous tree species in a forest biome of the Eastern Cape, South Africa. South Afr J Sci 100:633–637

    Google Scholar 

  • Helgason T, Fitter A, Young J (1999) A semi natural woodland. Mol Ecol 8:659–666

    Article  CAS  Google Scholar 

  • Higo M, Isobe K, Drijber R, Kondo T, Yamaguchi M, Takeyama S, Suzuki Y, Niijima D, Matsuda Y, Ishii R, Torigoe Y (2014) Impact of a 5-year winter cover crop rotational system on the molecular diversity of arbuscular mycorrhizal fungi colonizing roots of subsequent soybean. Biol Fertil Soils 50:913–926

    Article  Google Scholar 

  • Hijri I, Sykorová Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  PubMed  CAS  Google Scholar 

  • Holland T, Bowen P, Bogdanoff C, Hart MM (2014) How distinct are arbuscular mycorrhizal fungal communities associating with grapevines? Biol Fertil Soils 50(4):667–674

    Article  Google Scholar 

  • Houngnandan P, Yèmadjè R, Kane A, Boeckxx P, van Cleemput O (2009) Les endomycorhizes d’Isoberlinia doka (Crab & Staff) dans différentes formations végétales de la forêt classée de Wari-Maro (Nord Bénin). Tropicultura 27:83–87

    Google Scholar 

  • Jaccard P (1912) The distribution of the flora in the alpine zone.1. New Phytol 11:37–50

    Article  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    Article  PubMed  CAS  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989) Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytol 112:93–99

    Article  Google Scholar 

  • Johnson J-M, Houngnandan P, Kane A, Sanon K, Neyra M (2013) Diversity patterns of indigenous arbuscular mycorrhizal fungi associated with rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin, West Africa. Pedobiol—Int J Soil Biol 56:121–128

    Google Scholar 

  • Kohout P, Sudová R, Janoušková M, Čtvrtlíková M, Hejda M, Pánková H, Slavíková R, Štajerová K, Vosátka M, Sykorová Z (2014) Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: is there a universal solution? Soil Biol Biochem 68:482–493

    Article  CAS  Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  PubMed  CAS  Google Scholar 

  • Lekberg Y, Schnoor T, Kjøller R, Gibbons SM, Hansen LH, Al-Soud WA, Sørensen SJ, Rosendah S (2012) 454 sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J Ecol 100:151–160

    Article  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

  • Mathimaran N, Ruh R, Vullioud P, Frossard E, Jansa J (2005) Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza 16:61–66

    Article  PubMed  CAS  Google Scholar 

  • Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agric Ecosyst Environ 119:22–32

    Article  Google Scholar 

  • McArthur D, Knowles NR (1993) Influence of species of vesicular-arbuscular mycorrhizal fungi and phosphorus nutrition on growth, development, and mineral nutrition of potato (Solanum tuberosum L.). Plant Physiol 102:771–782

    PubMed Central  PubMed  CAS  Google Scholar 

  • Michel-Rosales A, Valdes M (1996) Arbuscular mycorrhizal colonization of lime in different agroecosystems of the dry tropics. Mycorrhiza 6:105–109

    Article  Google Scholar 

  • Mummey DL, Rillig MC (2007) Evaluation of LSU rRNA-gene PCR primers for analysis of arbuscular mycorrhizal fungal communities via terminal restriction fragment length polymorphism analysis. J Microbiol Methods 70:200–204

    Article  PubMed  CAS  Google Scholar 

  • Muthukumar T, Udaiyan K (2000) Arbuscular mycorrhizas of plants growing in the Western Ghats region, Southern India. Mycorrhiza 9:297–313

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris E-A, Boller T, Wiemken A (2004a) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    Article  Google Scholar 

  • Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T, Wiemken A (2004b) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  • Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME, Liira J, Metsis M, Neshataeva V, Paal J, Phosri C, Põlme S, Reier Ü, Saks Ü, Schimann H, Thiéry O, Vasar M, Moora M (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430

    Article  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  PubMed  CAS  Google Scholar 

  • Pennisi E (2008) DNA data. Proposal to “Wikify” GenBank meets stiff resistance. Science 319:1598–1599

    Article  PubMed  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 15:131–144

    Article  Google Scholar 

  • Pivato B, Mazurier S, Lemanceau P, Siblot S, Berta G, Mougel C, van Tuinen D (2007) Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytol 176:197–210

    Article  PubMed  CAS  Google Scholar 

  • Pivato B, Gamalero E, Lemanceau P, Berta G (2008) Colonization of adventitious roots of Medicago truncatula by Pseudomonas fluorescens C7R12 as affected by arbuscular mycorrhiza. FEMS Microbiol Lett 289:173–180

    Article  PubMed  CAS  Google Scholar 

  • Redecker D (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  PubMed  CAS  Google Scholar 

  • Renker C, Weißhuhn K, Kellner H, Buscot F (2006) Rationalizing molecular analysis of field-collected roots for assessing diversity of arbuscular mycorrhizal fungi: to pool, or not to pool, that is the question. Mycorrhiza 16:525–531

    Article  PubMed  CAS  Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    Article  CAS  Google Scholar 

  • Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz K-J, Gianinazzi S, Gianinazzi-Pearson V (2005) Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 16:51–60

    Article  PubMed  CAS  Google Scholar 

  • Robinson-Boyer L, Grzyb I, Jeffries P (2009) Shifting the balance from qualitative to quantitative analysis of arbuscular mycorrhizal communities in field soils. Fungal Ecol 2:1–9

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Sanginga N, Carsky R, Dashiell K (1999) Arbuscular mycorrhizal fungi respond to rhizobial inoculation and cropping systems in farmers’ fields in the Guinea savanna. Biol Fertil Soils 30:179–186

    Article  Google Scholar 

  • Scheublin TR, Ridgway KP, Young PW, van der Heijden MGA (2004) Nonlegume, legumes, and root nodules habor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shannon CE (1948) A mathematical theory for communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New York

    Google Scholar 

  • Smith FA, Smith SE (1989) Membrane transport at the biotrophic interface: an overview. Aust J Plant Physiol 16:33–43

    Article  CAS  Google Scholar 

  • Stukenbrock EH, Rosendahl S (2005) Distribution of dominant arbuscular mycorrhizal fungi among five plant species in undisturbed vegetation of a coastal grassland. Mycorrhiza 15:497–503

    Article  PubMed  Google Scholar 

  • Tawaraya K (2003) Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci Plant Nutr 49:655–668

    Article  Google Scholar 

  • Tchabi A, Coyne D, Hountondji F, Lawouin L, Wiemken A, Oehl F (2008) Arbuscular mycorrhizal fungal communities in sub-Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza 18:181–195

    Article  PubMed  Google Scholar 

  • Treseder KK (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371:1–13

    Article  CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. recherche de methodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA Presse, Paris, pp 217–221

    Google Scholar 

  • Uhlmann E, Gorke C, Petersen A, Oberwinkler F (2006) Arbuscular mycorrhizae from arid parts of Namibia. J Arid Environ 64:221–237

    Article  Google Scholar 

  • Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P (2006) Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environ Microbiol 8:971–983

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA targeted nested PCR. Mol Ecol 7:879–887

    Article  PubMed  Google Scholar 

  • Vine H (1968) Developments in the study of soils and shifting agriculture in tropical Africa. In: Moss RP (ed) The soil resources of tropical Africa. Cambridge University Press, Cambridge

    Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  PubMed  CAS  Google Scholar 

  • Wubet T, Kottke I, Demel T, Oberwinkler F (2003) Mycorrhizal status of indigenous trees in dry Afromontane forests of Ethiopia. For Ecol Manag 179:387–399

    Article  Google Scholar 

  • Wubet T, Weiß M, Kottke I, Teketay D, Oberwinkler F (2004) Molecular diversity of arbuscular mycorrhizal fungi in Prunus africana, an endangered medicinal tree species in dry Afromontane forests of Ethiopia. New Phytol 161:517–528

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out within the framework of the research project MycoVigna, Program of Cooperation for Scientific and Academic Research (CoRUS) of the French Ministry of Foreign and European Affairs (CoRUS 6121). The authors also thank the French-speaking universities agency (Agence Universitaire de la Francophonie, AUF) for the fellowship granted to J.-M. Johnson. The constructive comments and linguistic corrections of Dr. F. Azihou, Dr. V. N. Fassinou and Dr. E. Vandamme on an earlier version of the manuscript are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Martial Johnson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, JM., Houngnandan, P., Kane, A. et al. Colonization and molecular diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin (West Africa): an exploratory study. Ann Microbiol 66, 207–221 (2016). https://doi.org/10.1007/s13213-015-1097-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1097-y

Keywords

Navigation