Skip to main content
Log in

Dexamethasone Leads to Upregulation of BMP6 and ACHE Suppression of SMAD3 and ESR1 Genes in Human Mesenchymal Stem Cells

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The purpose of this study is to evaluate the effects of dexamethasone on mesenchymal stem cells from human gingiva using next-generation sequencing. The verification and suggestion of possible mechanisms was performed. Human gingiva-derived stem cells were treated with a final concentration of 10-7M dexamethasone at 2 and 24 hours. Extraction of RNA, sequencing of mRNA, gene ontology and pathway analysis were performed. Quantification by real-time polymerase chain reaction was conducted for validation. A fold change of two was applied for this study, and a log2 normalized read count of 5 or greater was applied to minimize false counts. Expression of SMAD3 and ESR1 was decreased in dexamethasone at 24 hours. Increased expression of BMP6 and ACHE was noted in dexamethasone at 24 hours. TGF-β signaling was involved in the target genes chosen for osteoblast differentiation. It was clear that the application of dexamethasone produced reduced expression of SMAD3 and ESR1 and enhanced expression of ACHE and BMP6 of human gingiva-derived mesenchymal stem cells. An RNA sequencing strategy can provide new insights into the mechanism of dexamethasone in stem cells originating from dental areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, T., Li, H., Fan, J., Zhao, R.C. & Weng, X. MicroRNA expression profile of dexamethasone-induced human bone marrow-derived mesenchymal stem cells during osteogenic differentiation. J. Cell. Biochem. 115, 1683–1691 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Ishida, Y. & Heersche, J.N. Glucocorticoid-induced osteoporosis: both in vivo and in vitro concentrations of glucocorticoids higher than physiological levels attenuate osteoblast differentiation. J. Bone Miner. Res. 13, 1822–1826 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Atmani, H., Chappard, D. & Basle, M.F. Proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures: effects of dexamethasone and calcitriol. J. Cell. Biochem. 89, 364–372 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Coelho, M.J. & Fernandes, M.H. Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials 21, 1095–1102 (2000).

    CAS  PubMed  Google Scholar 

  5. Park, J.B. Effects of the combination of dexamethasone and fibroblast growth factor2 on differentiation of osteoprecursor cells. Mol. Med. Rep. 9, 659–662 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Park, J.B. The effects of dexamethasone, ascorbic acid, and beta-glycerophosphate on osteoblastic differentiation by regulating estrogen receptor and osteopontin expression. J. Surg. Res. 173, 99–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Roelen, B.A. & Dijke, P. Controlling mesenchymal stem cell differentiation by TGFBeta family members. J. Orthop. Sci. 8, 740–748 (2003).

    Article  PubMed  Google Scholar 

  8. AC’t Hoen, P. et al. Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nat. Biotechnol. 31, 1015–1022 (2013).

    Article  CAS  Google Scholar 

  9. Schuster, S.C. Next-generation sequencing transforms today’s biology. Nat. Methods 5, 16–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Misra, K. & Matise, M.P. A critical role for sFRP proteins in maintaining caudal neural tube closure in mice via inhibition of BMP signaling. Dev. Biol. 337, 74–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Jin, Y.R., Turcotte, T.J., Crocker, A.L., Han, X.H. & Yoon, J.K. The canonical Wnt signaling activator, Rspondin2, regulates craniofacial patterning and morphogenesis within the branchial arch through ectodermal-mesenchymal interaction. Dev. Biol. 352, 1–13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beloti, M.M. & Rosa, A.L. Osteoblast differentiation of human bone marrow cells under continuous and discontinuous treatment with dexamethasone. Braz. Dent. J. 16, 156–161 (2005).

    Article  PubMed  Google Scholar 

  13. Jin, S.H. et al. Isolation and characterization of human mesenchymal stem cells from gingival connective tissue. J. Periodontal. Res. 50, 461–467 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, B.B., Ko, Y. & Park, J.B. Effects of risedronate on the morphology and viability of gingiva-derived mesenchymal stem cells. Biomed Rep. 3, 845–848 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ha, D.H. et al. Potential differentiation ability of gingiva originated human mesenchymal stem cell in the presence of tacrolimus. Sci. Rep. 6, 34910 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jeong, S.H., Lee, J.E., Jin, S.H., Ko, Y. & Park, J.B. Effects of Asiasari radix on the morphology and viability of mesenchymal stem cells derived from the gingiva. Mol. Med. Rep. 10, 3315–3319 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Fournier, B.P., Larjava, H. & Hakkinen, L. Gingiva as a source of stem cells with therapeutic potential. Stem Cells Dev. 22, 3157–3177 (2013).

    Article  PubMed  Google Scholar 

  18. Jeong, S.H., Kim, B.B., Lee, J.E., Ko, Y. & Park, J.B. Evaluation of the effects of Angelicae dahuricae radix on the morphology and viability of mesenchymal stem cells. Mol. Med. Rep. 12, 1556–1560 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, S.I., Yeo, S.I., Kim, B.B., Ko, Y. & Park, J.B. Formation of size-controllable spheroids using gingiva-derived stem cells and concave microwells: Morphology and viability tests. Biomed Rep. 4, 97–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Ha, D.H., Yong, C.S., Kim, J.O., Jeong, J.H. & Park, J.B. Effects of tacrolimus on morphology, proliferation and differentiation of mesenchymal stem cells derived from gingiva tissue. Mol. Med. Rep. 14, 69–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maher, C.A. et al. Transcriptome sequencing to detect gene fusions in cancer. Nature 458, 97–101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nahm, K.Y. et al. Gene profiling of bone around orthodontic mini-implants by RNA-sequencing analysis. Biomed Res. Int. 2015, 538080 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jaager, K., Islam, S., Zajac, P., Linnarsson, S. & Neuman, T. RNA-seq analysis reveals different dynamics of differentiation of human dermis-and adipose-derived stromal stem cells. PLoS One 7, e38833 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, Y. et al. Identification of differentially expressed genes in the development of osteosarcoma using RNAseq. Oncotarget 7, 87194–87205 (2016).

    PubMed  PubMed Central  Google Scholar 

  25. Zhou, S. TGF-β regulates β-catenin signaling and osteoblast differentiation in human mesenchymal stem cells. J. Cell. Biochem. 112, 1651–1660 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, G., Deng, C. & Li, Y.-P. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8, 272–288 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hjelmeland, A.B., Schilling, S.H., Guo, X., Quarles, D. & Wang, X.-F. Loss of Smad3-mediated negative regulation of Runx2 activity leads to an alteration in cell fate determination. Mol. Cell. Biol. 25, 9460–9468 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaji, H., Naito, J., Sowa, H., Sugimoto, T. & Chihara, K. Smad3 differently affects osteoblast differentiation depending upon its differentiation stage. Horm. Metab. Res. 38, 740–745 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Matsuda, T., Yamamoto, T., Muraguchi, A. & Saatcioglu, F. Cross-talk between transforming growth factor-β and estrogen receptor signaling through Smad3. J. Biol. Chem. 276, 42908–42914 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Friedman, M.S., Long, M.W. & Hankenson, K.D. Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J. Biol. Chem. 98, 538–554 (2006).

    CAS  Google Scholar 

  31. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Beom Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, BB., Kim, M., Park, YH. et al. Dexamethasone Leads to Upregulation of BMP6 and ACHE Suppression of SMAD3 and ESR1 Genes in Human Mesenchymal Stem Cells. BioChip J 12, 222–230 (2018). https://doi.org/10.1007/s13206-017-2306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-017-2306-5

Keywords

Navigation