Skip to main content
Log in

Exploration of the molecular mechanism of tea polyphenols against pulmonary hypertension by integrative approach of network pharmacology, molecular docking, and experimental verification

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Pulmonary hypertension, a common complication of chronic obstructive pulmonary disease, is a major global health concern. Green tea is a popular beverage that is consumed all over the world. Green tea’s active ingredients are epicatechin derivatives, also known as “polyphenols,” which have anti-carcinogenic, anti-inflammatory, and antioxidant properties. This study aimed to explore the possible mechanism of green tea polyphenols in the treatment of pulmonary hypertension using network pharmacology, molecular docking, and experimental verification. A total of 316 potential green tea polyphenols-related targets were obtained from the PharmMapper, SwissTargetPrediction, and TargetNet databases. A total of 410 pulmonary hypertension-related targets were predicted by the CTD, DisGeNET, pharmkb, and GeneCards databases. Green tea polyphenols-related targets were hit by the 49 targets associated with pulmonary hypertension. AKT1 and HIF1-α were identified through the FDA drugs-target network and PPI network combined with GO functional annotation and KEGG pathway enrichment. Molecular docking results showed that green tea polyphenols had strong binding abilities to AKT1 and HIF1-α. In vitro experiments showed that green tea polyphenols inhibited the proliferation and migration of hypoxia stimulated pulmonary artery smooth muscle cells by decreasing AKT1 phosphorylation and downregulating HIF1α expression. Collectively, green tea polyphenols are promising phytochemicals against pulmonary hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Newman JH (2005) Pulmonary hypertension. Am J Respir Crit Care Med 172:1072–1077. https://doi.org/10.1164/rccm.200505-684OE

    Article  PubMed  PubMed Central  Google Scholar 

  2. Poch D, Mandel J (2021) Pulmonary hypertension. Ann Intern Med 174:49–64. https://doi.org/10.7326/aitc202104200

    Article  Google Scholar 

  3. Rosenkranz S, Gibbs JS, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiéry JL (2016) Left ventricular heart failure and pulmonary hypertension. Eur Heart J 37:942–954. https://doi.org/10.1093/eurheartj/ehv512

    Article  PubMed  Google Scholar 

  4. McLaughlin VV, Shah SJ, Souza R, Humbert M (2015) Management of pulmonary arterial hypertension. J Am Coll Cardiol 65:1976–1997. https://doi.org/10.1016/j.jacc.2015.03.540

    Article  PubMed  Google Scholar 

  5. McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95:830–840. https://doi.org/10.1161/01.RES.0000145360.16770.9f

    Article  CAS  PubMed  Google Scholar 

  6. Noureddine H, Gary-Bobo G, Alifano M, Marcos E, Saker M, Vienney N, Amsellem V, Maitre B, Chaouat A, Chouaid C, Dubois-Rande JL, Damotte D, Adnot S (2011) Pulmonary artery smooth muscle cell senescence is a pathogenic mechanism for pulmonary hypertension in chronic lung disease. Circ Res 109:543–553. https://doi.org/10.1161/circresaha.111.241299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Butt MS, Ahmad RS, Sultan MT, Qayyum MM, Naz A (2015) Green tea and anticancer perspectives: updates from last decade. Crit Rev Food Sci Nutr 55:792–805. https://doi.org/10.1080/10408398.2012.680205

    Article  CAS  PubMed  Google Scholar 

  8. Chacko SM, Thambi PT, Kuttan R, Nishigaki I (2010) Beneficial effects of green tea: a literature review. Chin Med 5:13. https://doi.org/10.1186/1749-8546-5-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khan N, Mukhtar H (2018) Tea polyphenols in promotion of human health. Nutrients. https://doi.org/10.3390/nu11010039

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ohishi T, Fukutomi R, Shoji Y, Goto S, Isemura M (2021) The beneficial effects of principal polyphenols from green tea, coffee, wine, and curry on obesity. Molecules. https://doi.org/10.3390/molecules26020453

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mhatre S, Srivastava T, Naik S, Patravale V (2021) Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: a review. Phytomedicine 85:153286. https://doi.org/10.1016/j.phymed.2020.153286

    Article  CAS  PubMed  Google Scholar 

  12. McKay DL, Blumberg JB (2002) The role of tea in human health: an update. J Am Coll Nutr 21:1–13. https://doi.org/10.1080/07315724.2002.10719187

    Article  CAS  PubMed  Google Scholar 

  13. Zhu TT, Zhang WF, Luo P, He F, Ge XY, Zhang Z, Hu CP (2017) Epigallocatechin-3-gallate ameliorates hypoxia-induced pulmonary vascular remodeling by promoting mitofusin-2-mediated mitochondrial fusion. Eur J Pharmacol 809:42–51. https://doi.org/10.1016/j.ejphar.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  14. Donà M, Dell’Aica I, Calabrese F, Benelli R, Morini M, Albini A, Garbisa S (2003) Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J Immunol 170:4335–4341. https://doi.org/10.4049/jimmunol.170.8.4335

    Article  PubMed  Google Scholar 

  15. Mokra D, Adamcakova J, Mokry J (2022) Green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG): a time for a new player in the treatment of respiratory diseases? Antioxidants. https://doi.org/10.3390/antiox11081566

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reygaert WC (2018) Green tea catechins: their use in treating and preventing infectious diseases. Biomed Res Int 2018:9105261. https://doi.org/10.1155/2018/9105261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan DP, Long J, Lu Y, Lin J, Tong L (2014) The forecast of anticancer targets of cryptotanshinone based on reverse pharmacophore-based screening technology. Chin J Nat Med 12:443–448. https://doi.org/10.1016/s1875-5364(14)60069-8

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X, Lai L, Pei J, Li H (2017) PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 45:W356-w360. https://doi.org/10.1093/nar/gkx374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu S, Chen H, Ma W, Zhong Y, Liang Y, Gu L, Lu X, Li J (2022) Non-coding RNAs and related molecules associated with form-deprivation myopia in mice. J Cell Mol Med 26:186–194. https://doi.org/10.1111/jcmm.17071

    Article  CAS  PubMed  Google Scholar 

  20. Gholais NS, Shi C, Zhang J, Liao B, Albarmaqi RA, Tang X, Mi L (2022) Network pharmacology-based investigation on the mechanism of the JinGuanLan formula in treating acne vulgaris. Evid Based Complement Alternat Med 2022:6944792. https://doi.org/10.1155/2022/6944792

    Article  PubMed  PubMed Central  Google Scholar 

  21. Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389. https://doi.org/10.1016/j.apsb.2015.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yee Koh M, Spivak-Kroizman TR, Powis G (2008) HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci 33:526–534. https://doi.org/10.1016/j.tibs.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  23. Cheng CC, Chi PL, Shen MC, Shu CW, Wann SR, Liu CP, Tseng CJ, Huang WC (2019) Caffeic acid phenethyl ester rescues pulmonary arterial hypertension through the inhibition of AKT/ERK-dependent PDGF/HIF-1α in vitro and in vivo. Int J Mol Sci. https://doi.org/10.3390/ijms20061468

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen J, Song M, Qian D, Liu L, Yang K, Shou Y, Zhao H, Zhang L (2021) Atorvastatin rescues pulmonary artery hypertension via inhibiting the AKT/ERK-dependent PDGF-BB/HIF-1α axis. Panminerva Med. https://doi.org/10.23736/s0031-0808.20.03910-5

    Article  PubMed  Google Scholar 

  25. Qi D, Wei M, Jiao S, Song Y, Wang X, Xie G, Taranto J, Liu Y, Duan Y, Yu B, Li H, Shah YM, Xu Q, Du J, Gonzalez FJ, Qu A (2019) Hypoxia inducible factor 1α in vascular smooth muscle cells promotes angiotensin II-induced vascular remodeling via activation of CCL7-mediated macrophage recruitment. Cell Death Dis 10:544. https://doi.org/10.1038/s41419-019-1757-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leung EL, Cao ZW, Jiang ZH, Zhou H, Liu L (2013) Network-based drug discovery by integrating systems biology and computational technologies. Brief Bioinform 14:491–505. https://doi.org/10.1093/bib/bbs043

    Article  CAS  PubMed  Google Scholar 

  27. Tahmasebi A, Ebrahimie E, Pakniyat H, Ebrahimi M, Mohammadi-Dehcheshmeh M (2019) Tissue-specific transcriptional biomarkers in medicinal plants: application of large-scale meta-analysis and computational systems biology. Gene 691:114–124. https://doi.org/10.1016/j.gene.2018.12.056

    Article  CAS  PubMed  Google Scholar 

  28. Noor F, Tahir Ul Qamar M, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA (2022) Network pharmacology approach for medicinal plants: review and assessment. Pharmaceuticals. https://doi.org/10.3390/ph15050572

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sharma B, Yadav DK (2022) Metabolomics and network pharmacology in the exploration of the multi-targeted therapeutic approach of traditional medicinal plants. Plants. https://doi.org/10.3390/plants11233243

    Article  PubMed  PubMed Central  Google Scholar 

  30. Leem J, Jung W, Park HJ, Kim K (2022) A network pharmacology-based approach to explore mechanism of action of medicinal herbs for alopecia treatment. Sci Rep 12:2852. https://doi.org/10.1038/s41598-022-06811-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berger RM (2014) Pulmonary hypertension: smaller kids, smaller steps. Lancet Respir Med 2:348–350. https://doi.org/10.1016/s2213-2600(14)70090-6

    Article  PubMed  Google Scholar 

  32. Zhu W, Li Y, Zhao J, Wang Y, Li Y, Wang Y (2022) The mechanism of triptolide in the treatment of connective tissue disease-related interstitial lung disease based on network pharmacology and molecular docking. Ann Med 54:541–552. https://doi.org/10.1080/07853890.2022.2034931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xia QD, Xun Y, Lu JL, Lu YC, Yang YY, Zhou P, Hu J, Li C, Wang SG (2020) Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID-19. Cell Prolif 53:e12949. https://doi.org/10.1111/cpr.12949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song K, Duan Q, Ren J, Yi J, Yu H, Che H, Yang C, Wang X, Li Q (2022) Targeted metabolomics combined with network pharmacology to reveal the protective role of luteolin in pulmonary arterial hypertension. Food Funct 13:10695–10709. https://doi.org/10.1039/d2fo01424f

    Article  CAS  PubMed  Google Scholar 

  35. Han X, Li C, Yang P, Jiang T (2022) Potential mechanisms of Qili Qiangxin capsule to prevent pulmonary arterial hypertension based on network pharmacology analysis in a rat model. Ann Transl Med 10:453. https://doi.org/10.21037/atm-22-901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saeed M, Naveed M, Arif M, Kakar MU, Manzoor R, Abd El-Hack ME, Alagawany M, Tiwari R, Khandia R, Munjal A, Karthik K, Dhama K, Iqbal HMN, Dadar M, Sun C (2017) Green tea (Camellia sinensis) and l-theanine: medicinal values and beneficial applications in humans-a comprehensive review. Biomed Pharmacother 95:1260–1275. https://doi.org/10.1016/j.biopha.2017.09.024

    Article  CAS  PubMed  Google Scholar 

  37. Zhao T, Li C, Wang S, Song X (2022) Green tea (Camellia sinensis): a review of its phytochemistry, pharmacology, and toxicology. Molecules. https://doi.org/10.3390/molecules27123909

    Article  PubMed  PubMed Central  Google Scholar 

  38. Agarwal A, Prasad R, Jain A (2010) Effect of green tea extract (catechins) in reducing oxidative stress seen in patients of pulmonary tuberculosis on DOTS Cat I regimen. Phytomedicine 17:23–27. https://doi.org/10.1016/j.phymed.2009.10.019

    Article  CAS  PubMed  Google Scholar 

  39. Veerman GDM, van der Werff SC, Koolen SLW, Miedema JR, Oomen-de Hoop E, van der Mark SC, Chandoesing PP, de Bruijn P, Wijsenbeek MS, Mathijssen RHJ (2022) The influence of green tea extract on nintedanib’s bioavailability in patients with pulmonary fibrosis. Biomed Pharmacother 151:113101. https://doi.org/10.1016/j.biopha.2022.113101

    Article  CAS  PubMed  Google Scholar 

  40. Laurie SA, Miller VA, Grant SC, Kris MG, Ng KK (2005) Phase I study of green tea extract in patients with advanced lung cancer. Cancer Chemother Pharmacol 55:33–38. https://doi.org/10.1007/s00280-004-0859-1

    Article  PubMed  Google Scholar 

  41. Ishida N, Iizuka M, Kataoka K, Okazaki M, Shiraishi K, Yagi Y, Jobu K, Yokota J, Oishi M, Moriyama H, Shimamura T, Matsumura Y, Ukeda H, Miyamura M (2018) Improvement of blood lipid profiles by Goishi tea polyphenols in a randomised, double-blind, placebo-controlled clinical study. Int J Food Sci Nutr 69:598–607. https://doi.org/10.1080/09637486.2017.1386629

    Article  CAS  PubMed  Google Scholar 

  42. Nogueira LP, Nogueira Neto JF, Klein MR, Sanjuliani AF (2017) Short-term effects of green tea on blood pressure, endothelial function, and metabolic profile in obese prehypertensive women: a crossover randomized clinical trial. J Am Coll Nutr 36:108–115. https://doi.org/10.1080/07315724.2016.1194236

    Article  CAS  PubMed  Google Scholar 

  43. Bogdanski P, Suliburska J, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A (2012) Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res 32:421–427. https://doi.org/10.1016/j.nutres.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  44. Haddad F, Mohammed N, Gopalan RC, Ayoub YA, Nasim MT, Assi KH (2023) Development and optimisation of inhalable EGCG nano-liposomes as a potential treatment for pulmonary arterial hypertension by implementation of the design of experiments approach. Pharmaceutics. https://doi.org/10.3390/pharmaceutics15020539

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lechartier B, Berrebeh N, Huertas A, Humbert M, Guignabert C, Tu L (2022) Phenotypic diversity of vascular smooth muscle cells in pulmonary arterial hypertension: implications for therapy. Chest 161:219–231. https://doi.org/10.1016/j.chest.2021.08.040

    Article  PubMed  Google Scholar 

  46. Stenmark KR, Frid MG, Graham BB, Tuder RM (2018) Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovasc Res 114:551–564. https://doi.org/10.1093/cvr/cvy004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tajsic T, Morrell NW (2011) Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol 1:295–317. https://doi.org/10.1002/cphy.c100026

    Article  PubMed  Google Scholar 

  48. Jiang Y, Wang J, Tian H, Li G, Zhu H, Liu L, Hu R, Dai A (2015) Increased SUMO-1 expression in response to hypoxia: Interaction with HIF-1α in hypoxic pulmonary hypertension. Int J Mol Med 36:271–281. https://doi.org/10.3892/ijmm.2015.2209

    Article  CAS  PubMed  Google Scholar 

  49. Semenza GL (2005) Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology. Chest 128:592s–594s. https://doi.org/10.1378/chest.128.6_suppl.592S

    Article  CAS  PubMed  Google Scholar 

  50. Ball MK, Waypa GB, Mungai PT, Nielsen JM, Czech L, Dudley VJ, Beussink L, Dettman RW, Berkelhamer SK, Steinhorn RH, Shah SJ, Schumacker PT (2014) Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1α. Am J Respir Crit Care Med 189:314–324. https://doi.org/10.1164/rccm.201302-0302OC

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang RR, Yuan TY, Chen D, Chen YC, Sun SC, Wang SB, Kong LL, Fang LH, Du GH (2022) Dan-Shen-Yin granules prevent hypoxia-induced pulmonary hypertension via STAT3/HIF-1α/VEGF and FAK/AKT signaling pathways. Front Pharmacol 13:844400. https://doi.org/10.3389/fphar.2022.844400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ji L, Su S, Xin M, Zhang Z, Nan X, Li Z, Lu D (2022) Luteolin ameliorates hypoxia-induced pulmonary hypertension via regulating HIF-2α-Arg-NO axis and PI3K-AKT-eNOS-NO signaling pathway. Phytomedicine 104:154329. https://doi.org/10.1016/j.phymed.2022.154329

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the Natural Science Foundation of Hunan Province, China (Grant Number: 2022JJ70013) and Hunan province inclusive policy and innovation environment construction plan—Clinical medical technology innovation guidance project (Grant Number: 2020SK50904).

Author information

Authors and Affiliations

Authors

Contributions

HY and JWL conceived and designed the experiments. HY and JWL wrote the main manuscript text and prepared Figs. 18. JC, JML, CL, and WWZ prepared Figs. 18 and analyzed the data. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jin-Wen Luo.

Ethics declarations

Conflict of interest

There is no conflict of interest in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Cao, J., Li, JM. et al. Exploration of the molecular mechanism of tea polyphenols against pulmonary hypertension by integrative approach of network pharmacology, molecular docking, and experimental verification. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10700-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10700-z

Keywords

Navigation