Skip to main content
Log in

Genome-wide identification and comparative analysis of YABBY transcription factors in oil tea and tea tree

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The plant-specific transcription factor gene family, YABBY, plays an important role in plant development and stress response. Although YABBY genes have been identified in numerous species, a comprehensive characterization of YABBYs in tea tree and oil tea has been lacking. In this study, ten and three YABBY genes were identified in Camellia sinensis and C. oleifera, respectively. YABBY proteins could be divided into five subfamilies. Most YABBY genes in the same clade had similar structures and conserved motifs. Protein evolutionary analysis revealed that FIL/YAB3 displayed high conservation in all positions, followed by INO, YAB2, YAB5, and CRC. Specific site analysis suggested that the YABBY family was polyphyletic during the evolution. Compared to C. oleifera, two segmentally duplicated gene pairs were formed in C. sinensis during recent WGD events generated 30.69 and 45.08 Mya, respectively. Cis-acting element indicated that most YABBY genes contain box4, ARE, and MYB elements. A total of 120 SSR loci were found within CsYABBYs, consisting of six types, while 48 SSR loci were identified within CoYABBY, consisting of three types. Transcriptome results revealed that CRC and INO clades were specifically expressed in floral organs. The expression of CsYABBY10 and CsYABBY5 was significantly up-regulated under drought and salt treatments, respectively, as confirmed by qRT-PCR. CoYABBY genes were more susceptible to salt stress, as CoYABBY3 increased by about 15-fold. Furthermore, functional differentiation may have occurred in duplicated genes. These discoveries provide important information for further research on YABBYs in tea tree and oil tea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Funding

This work was Supported by Science and Technology Support Plan Project of Guizhou province ([2018]2252, [2023]086), the National Key Research and Development Program of China (2022YFD1600802), China Agriculture Research System (CARS-19), and GZMARS-Tea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqin Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yang, X., Zhang, Q. et al. Genome-wide identification and comparative analysis of YABBY transcription factors in oil tea and tea tree. 3 Biotech 14, 113 (2024). https://doi.org/10.1007/s13205-024-03940-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-024-03940-9

Keywords

Navigation