Skip to main content
Log in

Optimization and reactor-scale production of plant growth regulators by Pleurotus eryngii

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The aims of the this study are to select the best cultivation type for plant growth regulator (PGR) production, to optimize PGR production with statistical experimental design, and to calculate bioprocess parameters and yield factors during PGR production by P. eryngii in flask and reactor scales. Submerged fermentation was the best cultivation type with 4438.67 ± 37.14, 436.95 ± 27.31, and 54.32 ± 3.21 mg/L of GA3, ABA, and IAA production values, respectively. The Plackett–Burman and Box–Behnken designs were used to determine effective culture parameters and interactive effects of the selected culture parameters on PGR production by Pleurotus eryngii under submerged fermentation. The statistical model is valid for predicting PGR production by P. eryngii. After these studies, maximum PGR production (7926.17 ± 334.09, 634.92 ± 12.15, and 55.41 ± 4.38 mg/L for GA3, ABA, and IAA, respectively) was reached on the 18th day of fermentation under optimized conditions. The optimum formula was 50 g/L fructose, 3 g/L NaNO3, and 1.5 g/L KH2PO4, 1 mg/L thiamine, incubation temperature 25 °C, initial medium pH 7.0, and an agitation speed of 150 rpm. The kinetics of PGR production was investigated in batch cultivation under 3-L stirred tank reactor conditions. Concentrations of GA3, ABA, and IAA of 10,545.00 ± 527.25, 872.32 ± 21.81, and 60.48 ± 3.48 mg/L were obtained at the reactor scale which were 4.1, 3.4, and 2.3 times higher than the initial screening values. The specific growth rate (µ), the volumetric (rp) and specific (Qp) PGR production rates, 486.11 mg/L/day and 107.43 mg/g biomass/day for GA3, confirmed the successful transfer of optimized conditions to the reactor scale. In the presented study, PGR production of P. eryngii is reported for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Akyüz M, Kırbağ S, Karatepe M, Güvenç M, Zengin F (2011) Vitamin and fatty acid composition of P. eryngii var. eryngii. Bitlis Eren Univ J Sci Technol 1:16–20

    Article  Google Scholar 

  • Alam N, Yoon KN, Lee JS, Cho HJ, Shim MJ, Lee TS (2011) Dietary effect of Pleurotus eryngii on biochemical function and histology in hypercholesterolemic rats. Saudi J Biol Sci 18:403–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Başıaçık Karakoç Ş, Aksöz N (2005) Bazı matrikslere tutuklanmiş Aspergillus niger’den gibberellik asit üretimi. Orlab on Line Mikrobiyol Derg 3:16 (In Turkish)

    Google Scholar 

  • Bayburt C, Karaduman AB, Yenice Gürsu B, Tuncel M, Yamaç M (2020) Decolourization and detoxification of textile dyes by Lentinus arcularius in immersion bioreactor scale. Int J Environ Sci Technol 17:945–958

    Article  CAS  Google Scholar 

  • Bose A, Shah D, Keharia H (2013) Production of indole-3-acetic-acid (IAA) by the white rot fungus Pleurotus ostreatus under submerged condition of Jatropha seedcake. Mycology 4:103–111

    Article  CAS  Google Scholar 

  • Carlavilla JR, Manjón JL (2023) The king oyster mushroom Pleurotus eryngii behaves as a necrotrophic pathogen of Eryngium campestre. Ital J Mycol 52:22–31

    Google Scholar 

  • Cen YK, Li MH, Wang Q, Zhang JM, Yuan JC, Wang YS, Liu ZQ, Zheng Y (2023) Evolutionary engineering of Fusarium fujikuroi for enhanced production of gibberellic acid. Process Biochem 125:7–14

    Article  CAS  Google Scholar 

  • Curtis PJ, Cross BE (1954) Gibberellic acid. A new metabolite from the culture filtrates of Gibberella fujikuroi. Chem Ind 35:1066

    Google Scholar 

  • de Oliveira J, Rodrigues C, Vandenberghe LPS, Câmara MC, Libardi N, Soccol CR (2017) Gibberellic acid production by different fermentation systems using citric pulp as substrate/support. BioMed Res Int 2017:5191046

    Article  PubMed  PubMed Central  Google Scholar 

  • Doğan B, Yıldız Z, Aksöz N, Eninanç AB, Dağ İ, Yıldız A, Doğan HH, Yamaç M (2023) Flask and reactor scale production of plant growth regulators by Inonotus hispidus: optimization, immobilization and kinetic parameters. Prep Biochem Biotechnol. https://doi.org/10.1080/10826068.2023.2185636. (In press)

    Article  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Durán-Páramo E, Molina-Jiménez H, Brito-Arias MA, Martínez FR (2004) Gibberellic acid production by free and immobilized cells in different culture systems. Appl Biochem Biotechnol 114:381–388

    Article  Google Scholar 

  • El-Sheikh MA, Rajaselvam J, Abdel-Salam EM, Vijayaraghavan P, Alatar AA, Biji GD (2020) Paecilomyces sp. ZB is a cell factory for the production of gibberellic acid using a cheap substrate in solid state fermentation. Saudi J Biol Sci 27:2431–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein E, Miles PG (1967) Identification of indole-3-acetic acid in the basidiomycete Schizophyllum commune. Plant Physiol 42:911–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fushimi K, Anzai K, Tokuyama S, Kiriiwa Y, Matsumoto N, Sekiya A, Hashizume D, Nagasawa K, Hirai H, Kawagishi H (2012) Agrocybynes A–E from the culture broth of Agrocybe praecox. Tetrahedron 68:1262–1265

    Article  CAS  Google Scholar 

  • Gordon SA, Fleck A, Bell J (1978) Optimal conditions for the estimation of ammonium by the Berthelot reaction. Ann Clin Biochem 15:270–275

    Article  CAS  PubMed  Google Scholar 

  • Gruen HE (1959) Auxins and Fungi. Ann Rev Plant Physiol 10:405–440

    Article  CAS  Google Scholar 

  • Hamayun M, Khan S, Khan MA, Khan AL, Kang SM, Kim SK, Joo GJ, Lee IJ (2009) Gibberellin production by pure cultures of a new strain of Aspergillus fumigatus. World J Microbiol Biotechnol 25:1785–1792

    Article  CAS  Google Scholar 

  • Hwang HJ, Kim SW, Xu CP, Choi JW, Yun JW (2004) Morphological and rheological properties of the three different species of basidiomycetes Phellinus in submerged cultures. J Appl Microbiol 96:1296–1305

    Article  CAS  PubMed  Google Scholar 

  • Isa NKM, Don MM (2014) Investigation of the Gibberellic acid optimization with a statistical tool from Penicillium variable in batch reactor. Prep Biochem Biotechnol 44(6):572–585

    Article  CAS  PubMed  Google Scholar 

  • Khan SA, Hamayun M, Kim HY, Yoon HJ, Lee IJ, Kim JG (2009) Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. World J Microbiol Biotechnol 25:829–833

    Article  CAS  Google Scholar 

  • Kobori H, Sekiya A, Suzuki T, Choi JH, Hirai H, Kawagishi H (2015) Bioactive sesquiterpene aryl esters from the culture broth of Armillaria sp. J Nat Prod 78:163–167

    Article  CAS  PubMed  Google Scholar 

  • Lale GJ, Gadre RV (2016) Production of Bikaverin by a Fusarium fujikuroi mutant in submerged cultures. AMB Express 6(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhou B, Kin RS, Jia L, Deng P, Fan YKM (2010) Extraction and antioxidant activities of intracellular polysaccharide from Pleurotus sp. mycelium. Int J Biol Macromol 47:116–119

    Article  CAS  PubMed  Google Scholar 

  • Machado CMM, Soccol CR, De Oliveira BH, Pandey A (2002) Gibberellic acid production by solid-state fermentation in coffee husk. Appl Biochem Biotechnol 102–103:179–191

    Article  PubMed  Google Scholar 

  • Monrro M, Garcia JR (2022) Gibberellic acid production from corn cob residues via fermentation with Aspergillus niger. J Chem 2022:1112941

    Google Scholar 

  • Pham MT, Huang CM, Kirschner R (2019) The plant growth-promoting potential of the mesophilic wood-rot mushroom Pleurotus pulmonarius. J Appl Microbiol 127:1157–1171

    Article  CAS  PubMed  Google Scholar 

  • Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Article  Google Scholar 

  • Rangaswamy V (2012) Improved production of gibberellic acid by Fusarium moniliforme. J Microbiol Res 2(3):51–55

    Article  Google Scholar 

  • Seyis Bilkay I, Karakoç Ş, Aksöz N (2010) Indole-3-acetic acid and gibberellic acid production in Aspergillus niger. Turk J Biol 34:313–318

    Google Scholar 

  • Shenbhgaraman R, Jagadish LK, Premalatha K, Kaviyarasan V (2012) Optimization of extracellular glucan production from Pleurotus eryngii and its impaction angiogenesis. Int J Biol Macromol 50:957–964

    Article  Google Scholar 

  • Shukla R, Chand S, Srivastava AK (2005) Batch kinetics and modeling of gibberellic acid production by Gibberella fujikuro. Enzyme Microb Technol 36:492–497

    Article  CAS  Google Scholar 

  • Silva EME, Dendooven L, Reynell JAU, Ramirez AIM, Gonzalez Alatorre G, Martinez MT (1999) Morphological development and gibberellin production by different strains of Gibberella fujikuroi in shake flasks and bioreacto. World J Microbiol Biotechnol 15:753–755

    Article  CAS  Google Scholar 

  • Silva EME, Dendooven L, Magana IP, Parra RP, de la Torre M (2000) Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors. J Biotechnol 76:147–155

    Article  Google Scholar 

  • Stajić M, Vukojević J, Duletić-Laušević S (2009) Biology of Pleurotus eryngii and role in biotechnological processes: a review. Crit Rev Biotechnol 29(1):55–66

    Article  PubMed  Google Scholar 

  • Swain MR, Ray RC (2008) Optimization of cultural conditions and their statistical interperation for production of indole-3-acetic acid by Bacillus subtilis CM5 using cassava fibrous residue. J Sci Ind Res 67:622–628

    CAS  Google Scholar 

  • Takayama T, Yoshida H, Araki K, Nakayama K (1983) Microbial production of abscisic acid with Cercospora rosicola. Biotechnol Lett 5:55–58

    CAS  Google Scholar 

  • Tiryaki D, Gülmez Ö (2021) Determination of the effect of indole acetic acid (IAA) produced from edible mushrooms on plant growth and development. Anatol J Biol 2:17–20

    Google Scholar 

  • Ünyayar S, Topcuoglu SF, Ünyayar A (1996) A modified method for extraction and identification of indole-3-acetic acid (IAA), gibberellic acid (GA3), abscisic acid (ABA) and zeatin produced by Phanerochaete chrysosporium ME 446 Bulgar. J Plant Physiol 22:105–110

    Google Scholar 

  • Ünyayar S, Ünyayar A, Ünal E (2000) Production of auxin and abscisic acid by Phanerochaete chrysosporium ME446 immobilized on polyurethane foam. Turk J Biol 24:769–774

    Google Scholar 

  • Valentino MJG, Galvez CT (2015) Auxin-like and gibberellic acid-like activity of Pleurotus sajor-caju (Fr.) Singer and Volvariella volvacea Fr. on Tomato (Lycopersicon esculentum Mill.) seedlings. Adv Environ Biol 9(23):361–367

    Google Scholar 

  • Wang B, Yin K, Wu C, Wang L, Yin L, Lin H (2022) Medium optimization for GA4 production by Gibberella fujikuroi using response surface methodology. Fermentation 8:230

    Article  CAS  Google Scholar 

  • Wei W, Hui WY, Lie LJ, Fei YY (2019) Enhancement of gibberellin acid production through pH regulation in batch fermentation of Gibberella fujikuroi. Mycosystema 38(7):1185–1190

    Google Scholar 

  • Werle LB, Abaide ER, Felin TH, Kuhn KR, Tres MV, Zabot GL, Kuhn RC, Jahn SL, Mazutti MA (2020) Gibberellic acid production from Gibberella fujikuroi using agro-industrial residues. Biocat Agric Biotechnol 25:101608

    Article  Google Scholar 

  • Wu J, Kobori H, Kawaide M, Suzuki T, Choi JH, Yasuda N, Noguchi K, Matsumoto T, Hirai H, Kawagishi H (2013) Isolation of bioactive steroids from the Stropharia rugosoannulata mushroom and absolute configuration of Strophasterol B. Biosci Biotechnol Biochem 77:1779–1781

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Uchida K, Ridwan AY, Kondo M, Choi JH, Hirai H, Kawagishi H (2019) Erinachromanes A and B and Erinaphenol A from the culture broth of Hericium erinaceus. J Agric Food Chem 67:3134–3139

    Article  CAS  PubMed  Google Scholar 

  • Yaoita Y, Yoshihara Y, Kakuda R, Machida K, Kikuchi M (2002) New sterols from two edible mushrooms Pleurotus eryngii and Panellus serotinus. Chem Pharmac Bull 50:551–553

    Article  CAS  Google Scholar 

  • Yürekli F, Yesilada Ö, Yürekli M, Topcuoglu SF (1999) Plant growth hormone production from olive oil mill and alcohol factory wastewaters by white rot fungi. World J Microbiol Biotechnol 15:503–505

    Article  Google Scholar 

  • Yürekli F, Gecgil H, Topcuoglu SF (2003) The synthesis of indole-3-acetic acid by the industrially important white-rot fungus Lentinus sajor-caju under different culture conditions. Mycol Res 107:305–309

    Article  PubMed  Google Scholar 

  • Zervakis GI, Venturella G, Papadopoulou K (2001) Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters. Microbiology 147(11):3183–3194

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Lei Z, Liu Z-Q, Zheng Y-G (2020) Improvement of gibberellin production by a newly isolated Fusarium fujikuroi mutant. J Appl Microbiol 129(6):1620–1632

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Abdunnasır Yıldız who donated the studied isolate and to the Eskişehir Osmangazi University Research Fund (201219A106) for financing this study.

Author information

Authors and Affiliations

Authors

Contributions

MY designed the experiment with the help of NA. BD, ABE, and BGKK performed the study and ZY analyzed the data. MY, NA, and ZY finalized the manuscript before final submission.

Corresponding author

Correspondence to Mustafa Yamaç.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Research involving human participants and/or animals

The authors declare that human participants or animals were not included in this study.

Informed consent

The authors declared that this research does not require informed consent since it is not a clinical trial.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan, B., Yıldız, Z., Aksöz, N. et al. Optimization and reactor-scale production of plant growth regulators by Pleurotus eryngii. 3 Biotech 13, 314 (2023). https://doi.org/10.1007/s13205-023-03744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03744-3

Keywords

Navigation