Skip to main content
Log in

Endophytic fungi isolated from Brazilian medicinal plants as potential producers of antioxidants and their relations with anti-inflammatory activity

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this study, 19 endophytic fungi were isolated from Lafoensia pacari, Guazuma ulmifolia, Campomanesia xanthocarpa and Siparuna guianensis. Seventeen strains were molecularly identified as belonging to the genera Colletotrichum, Diaporthe, Bjerkandera, Talaromyces, Cochliobolus, Phaeophlebiopsis, Curvularia, and Xylaraceae. Assays for detecting antioxidant activity were performed by free radical scavenging activity using the DDPH and ABTS + methods. Based on the results with DPPH, two strains were selected to evaluate the presence of flavonoids and anti-inflammatory activity. A strong positive correlation was found between these activities and the presence of flavonoids. The anti-inflammatory activity of endophytic fungi is under explored; however, the Talaromyces obtained the best result of 87.33% protection of erythrocytes and Colletotrichium of 60.71%. This study demonstrated that endophytic fungi associated with selected plants are potential sources of novel antioxidant products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ananthi T, Chitra M (2013) Screening of invitro anti-inflammatory activity of Michelia champaca linn. Flowers Asian J Pharm ClinRes 6:71–72

    Google Scholar 

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agatonovic-kustrin S, Morton DW, Yusof SP (2013) The use of fourier transform infrared (FTIR) spectroscopy and artificial neural networks (ANNs) to assess wine quality. Modern Chem AppLs 1:1–8

    Google Scholar 

  • Ahmad S, Abdel-salam NM, Ullah R (2016) In vitro antimicrobial bioassays, dpph radical scavenging activity, and FTIR spectroscopy analysis of heliotropium bacciferum. Biomed Res Int 2016:1–12

    CAS  Google Scholar 

  • Alarcon-Aguilara FJ, Roman-Ramos R, Perez-Gutierrez S, Aguilar-Contreras A, Contreras-Weber CC, Flores-Saenz JL (1998) Study of the antihyperglycemic effect of plants used as antidiabetics. J Ethnopharmacol 61:101–110

    CAS  PubMed  Google Scholar 

  • Arora DS, Chandra P (2011) Antioxidant activity of Aspergillus fumigatus. ISRN Pharmacol 2011:1–11. https://doi.org/10.5402/2011/619395

    Article  Google Scholar 

  • Bara R, Aly AH, Pretsch A, Wray V, Wang B, Proksch P, Debbab A (2013) Antibiotically active metabolites from Talaromyces wortmannii, an endophyte of Aloe vera. J Antibiot 66:491–493

    CAS  Google Scholar 

  • Berg G (2009) Plantmicrobe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    CAS  PubMed  Google Scholar 

  • Chen S, He L, Chen D, Cai R, Long Y, Lu Y, She Z (2017) Talaramide A, anunusual alkaloid from the mangrove endophytic fungus Talaromyces sp. (HZYX1) as an inhibitor of mycobacterial PknG. New J Chem 41:4273–4276

    CAS  Google Scholar 

  • Cui J, Guo T, Ren Z, Zhang N, Wang M (2015) Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta and R. sachalinensis. Plos One 13:1–16. https://doi.org/10.1371/journal.pone.0118204

    Article  CAS  Google Scholar 

  • D’Amico M, Frisullo S, Cirulli M (2008) Endophytic fungi occurring in Fennel, lettuce, chicory and celery comercial cropsin Southern Italy. Mycol Res 112:100–107

    PubMed  Google Scholar 

  • Debbab A, Aly AH, Proksch P (2013) Mangrove derived fungal endophytesea chemical and biological perception. Fungal Divers 61:1–27

    Google Scholar 

  • Deng H, Gary J, Van berkel GJ (1998) Electrospray mass spectrometry and uv/visible spectrophotometry studies of aluminum (III) –flavonoid complexes. J mass spectrom 33:1080–1087

    CAS  Google Scholar 

  • Ferreyra MLF, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 28:222

    Google Scholar 

  • Félix-Silva J, Souza T, Menezes Y, Cabral B, Câmara RBG, Silva-junior AA, Rocha HAO, Rebecchi IMM, Zucolotto SM, Fernandes-pedrosa MF (2014) Aqueous leaf extract of Jatropha gossypiifolia L. (Euphorbiaceae) inhibits enzymatic and biological actions of bothrops jararaca snake venom. PLoS ONE 8:e104952

    Google Scholar 

  • Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108:267–289

    PubMed  PubMed Central  Google Scholar 

  • Guyton AC, Hall JE (eds) (2006) Tratado de Fisiologia Médica, 11th edn. Elsevier, Rio de Janeiro

    Google Scholar 

  • Hall TA (1999) Bioedit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/nt. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hammer Ø, Dat H, Ryan PD (2001) PAST. Paleontological statistics software package for education and data analysis. Paleontol Electron 4:9

    Google Scholar 

  • Heneczkowski M, Kopacz M, Nowak D, Kuziar A (2001) Infrared spectrum analysis of some flavonoids. Acta Pol Pharm 58:415–420

    CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120

    CAS  PubMed  Google Scholar 

  • Kumar V, Ali bhat Z, KumarKhanChashoo DNI (2012) Evaluation of antiinflammatory potential of leaf extracts of Skimmia anquetilia. Asian Pac J Trop Med 2:627–630

    Google Scholar 

  • Kumar SS, Manoj P, Giridhar P (2015) Fourier transform infrared spectroscopy (FTIR) analysis, chlorophyll content and antioxidant properties of native and defatted foliage of green leafy vegetables. J Food Sci Technol 52:9131–9139

    Google Scholar 

  • Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207

    CAS  PubMed  Google Scholar 

  • Jia M, Chen L, Xin H, Zheng C, Rahman K, Han T, Qin L (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 9:906

    Google Scholar 

  • Li F, Xue F, Yu XGC-MS (2017) FTIR and Raman analysis of antioxidant components of red pigments from Stemphylium lycopersici. Curr Microbiol 74:532–539

    CAS  PubMed  Google Scholar 

  • Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59

    CAS  PubMed  Google Scholar 

  • Pan F, Su T, Cai S, Wu W (2017) Fungal endophyte-derived Fritillaria unibracteata var. wabuensis: diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds. Sci Rep 7:42008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parvin S, Das N, Jahan N, Akhter A, Nahar L, Islam E (2015) Evaluation of in vitro anti-inflammatory and antibacterial potential of Crescentia cujete leaves and stem bark. BMC Res Notes 8:412

    PubMed  PubMed Central  Google Scholar 

  • Pinheiro PF, Justino GC (2012) Structural analysis of flavonoids and related compounds—a review of spectroscopic applications, phytochemicals—a global perspective of their role in nutrition and Healthvenketeshwer Rao (Ed.) InTech: 33–56.

  • Prasad R, Kamal S, Sharma PK, Oelmuller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53:1016–1024

    CAS  PubMed  Google Scholar 

  • Rang HP, Dale MM, Ritter JM, Moore PK (2005) Pharmacology, 5th edn. Elsevier, India, pp 27–29

    Google Scholar 

  • Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K (2009) Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy - Drug Targets 8:229–235

    CAS  PubMed  Google Scholar 

  • Rodriguez R, White J Jr, Arnold A, Redman R (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Saleem TKM, Azeem AK, Dilip C, Sankar C, Prasanth NV, Duraisa R (2011) Anti-inflammatory activity of the leaf extacts of Gendarussa vulgaris Nees. Asian Pac J Trop Med 1:147–149

    Google Scholar 

  • Santos IP, Silva LCN, Silva MV, Araújo JM, Cavalcanti MS, Lima VLM (2015) Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Front Microbiol 6:1–6. https://doi.org/10.3389/fmicb.2015.00350

    Article  Google Scholar 

  • Silva GA, Bernardi TL, Schaker PDC, Menegotto M, Rapid VP, Yeast DNA (2012) Extraction by boiling and freeze-thawing without using chemical reagents and DNA purification. Brazilian Arch Bio Tech 55:319–327

    Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    CAS  PubMed  Google Scholar 

  • Strobel GA, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Pro 67:257–268

    CAS  Google Scholar 

  • Surveswaran S, Cai YZ, Corke H, Sun M (2007) Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem 102:938–953

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30(12):2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tejesvi MV, Nalini MS, Mahesh B et al (2007) New hopes from endophytic fungal secondary metabolite. Bol Soc Quim Mex 1:19–26

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Han T, Li W, Jia M, Xue L, Rahman K, Qin L (2013) Geographic and tissue influences on endophytic fungal communities of Taxus chinensis var. mairei in China. Curr Microbiol 66:40–48

    CAS  PubMed  Google Scholar 

  • Valentini CMA, Rodríguez-Ortíz CE, Coelho MFB (2010) Siparuna guianensis Aublet (negramina): uma revisão. Brazilian J med plants 12:96–104

    Google Scholar 

  • Zhai MM, Li J, Jiang CX, Shi YP, Di DL, Crews P, Wu QX (2016) The bioactive secondary metabolites from Talaromyces species. Nat Prod Bioprospect 6:1–24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Xu L, Jiang C (2012) Methods for the study of endophytic microorganisms from traditional chinese medicine. Methods Enzymol 517:3–21

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iolanda Cristina Silveira Duarte.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, T.F.B., dos Santos Carvalho, C., de Almeida, M.A. et al. Endophytic fungi isolated from Brazilian medicinal plants as potential producers of antioxidants and their relations with anti-inflammatory activity. 3 Biotech 10, 223 (2020). https://doi.org/10.1007/s13205-020-02211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02211-7

Keywords

Navigation