Skip to main content
Log in

Phytochemical Analysis and Antioxidant Activity of Endophytic Fungi Isolated from Dillenia indica Linn.

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Endophytic fungi live symbiotically inside plants and are hidden source of natural bioactive molecules. The present study was carried out to investigate the phytochemical analysis and antioxidant activity of endophytic fungi isolated from the ethnomedicinal plant Dillenia indica L. The ethyl acetate crude extracts of the endophytic fungal strains were preliminarily evaluated for their phytochemical analysis, and the results showed the presence of alkaloids, flavonoids, phenolics, terpene, and saponins. The crude extracts of more than 60% of the isolates showed 50–90% antioxidant activity by DPPH and H2O2 assay. The inhibition percentage of ethyl acetate extracts ranges from 34.05 to 91.5%, whereas IC50 values vary from 72.2 to 691.14%. Among all the strains, Fomitopsis meliae crude extract showed a maximum inhibition percentage, i.e., 91.5%, with an IC50 value of 88.27 µg/mL. Chaetomium globosum showed significant activity having an inhibition percentage of 89.88% and an IC50 value of 74.44 µg/mL. The total phenolic and flavonoid content in the crude extract of Chaetomium globosum was 37.4 mg gallic acid equivalent (GAE)/g DW and 31.0 mg quercetin equivalent (GAE)/g DW. GC–MS analysis of crude extract of C. globosum revealed different compounds, such as squalene; butanoic acid, 2-methyl-; hexadecanoic acid; 2-propanone, 1-phenyl-; 5-oxo-pyrrolidine-2-carboxylic acid methyl ester; 9,12-octadecadienoic acid (z)- etc. Many of these belong to phenolics, which are natural antioxidant compounds. The findings suggested that endophytic fungi associated with Dillenia indica L. can be a potential source of novel antioxidant compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data is included in this article.

Code Availability

Not applicable.

References

  1. Venieraki, A., Dimou, M., & Katinakis, P. (2017). Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hellenic Plant Protection Journal, 10(2), 51–66. https://doi.org/10.1515/hppj-2017-0006

    Article  Google Scholar 

  2. Khare, E., Mishra, J., & Arora, N. K. (2018). Multifaceted interactions between endophytes and plant: Developments and prospects. Frontiers in Microbiology, 9, 2732. https://doi.org/10.3389/fmicb.2018.02732

    Article  PubMed  PubMed Central  Google Scholar 

  3. Manganyi, M. C., & Ateba, C. N. (2020). Untapped potentials of endophytic fungi: A review of novel bioactive compounds with biological applications. Microorganisms, 8(12), 1934. https://doi.org/10.3390/microorganisms8121934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar, V., & Prasher, I. B. (2021). Phytochemical analysis and antimicrobial potential of Nigrospora sphaerica (Berk. & Broome) Petch, a fungal endophyte isolated from Dillenia indica L. Advances in Traditional Medicine, 1–13. https://doi.org/10.1007/s13596-021-00619-x

  5. Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews, 4(8), 118. https://doi.org/10.4103/0973-7847.70902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., ... & Sharifi-Rad, J. (2020). Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology, 11, 694. https://doi.org/10.3389/fphys.2020.00694

  7. Tiwari, P., & Bae, H. (2022). Endophytic fungi: Key insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms, 10(2), 360. https://doi.org/10.3390/microorganisms10020360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(6), 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  9. Gupta, S., Chaturvedi, P., Kulkarni, M. G., & Van Staden, J. (2020). A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnology Advances, 39, 107462. https://doi.org/10.1016/j.biotechadv.2019.107462

    Article  CAS  PubMed  Google Scholar 

  10. Kumar, V., & Prasher, I. B. (2022). Antimicrobial potential of endophytic fungi isolated from Dillenia indica L. and identification of bioactive molecules produced by Fomitopsis meliae (Undrew.) Murril. Natural Product Research, 1–5. https://doi.org/10.1080/14786419.2022.2043855

  11. Kumar, V., & Prasher, I. B. (2022). Seasonal variation and tissues specificity of endophytic fungi of Dillenia indica L. and their extracellular enzymatic activity. Archives of Microbiology, 204(6), 341. https://doi.org/10.1007/s00203-022-02933-7

    Article  CAS  PubMed  Google Scholar 

  12. Mahmud, S. N., Sohrab, M. H., Begum, M. N., Rony, S. R., Sharmin, S., Moni, F., ... & Afroz, F. (2020). Cytotoxicity, antioxidant, antimicrobial studies and phytochemical screening of endophytic fungi isolated from Justicia gendarussa. Annals of Agricultural Sciences, 65(2), 225–232. https://doi.org/10.1016/j.aoas.2020.12.003

  13. Sharma, V., Agarwal, A., Chaudhary, U., & Singh, M. (2013). Phytochemical investigation of various extracts of leaves and stems of Achyranthes aspera Linn. International Journal of Pharmacy and Pharmaceutical Sciences, 5(1), 317–320.

    CAS  Google Scholar 

  14. Kancherla, N., Dhakshinamoothi, A., Chitra, K., & Komaram, R. B. (2019). Preliminary analysis of phytoconstituents and evaluation of anthelminthic property of Cayratia auriculata (In vitro). Maedica, 14(4), 350–356.

  15. Trease, G. E., & Evans, W. C. (1989). Phytochemical screening. Pharmacognsy (11th ed.). Macmillian Publishers, London, England.

    Google Scholar 

  16. Parekh, J., & Chanda, S. (2007). In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turkish Journal of Biology, 31(1), 53–58. https://doi.org/10.3906/biy-0610-4

    Article  CAS  Google Scholar 

  17. Sofowara, A. (1996). Medicinal plants and traditional medicine in Africa (p. 289). Spectrum Books Ltd, Ibadan.

    Google Scholar 

  18. Harborne, J. B. (1973). Phytochemical methods (pp. 49–88). Chapman and Hall Ltd.

    Google Scholar 

  19. Onwukaeme, D. N., Ikuegbvweha, T. B., & Asonye, C. C. (2007). Evaluation of phytochemical constituents, antibacterial activities and effect of exudate of Pycanthus Angolensis Weld Warb (Myristicaceae) on corneal ulcers in rabbits. Tropical Journal of Pharmaceutical Research, 6(2), 725–730. https://doi.org/10.4314/tjpr.v6i2.14652

    Article  Google Scholar 

  20. Xie, J. H., Xie, M. Y., Nie, S. P., Shen, M. Y., Wang, Y. X., & Li, C. (2010). Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja. Food Chemistry, 119(4), 1626–1632. https://doi.org/10.1016/j.foodchem.2009.09.055

    Article  CAS  Google Scholar 

  21. Al-Owaisi, M., Al-Hadiwi, N., & Khan, S. A. (2014). GC-MS analysis, determination of total phenolics, flavonoid content and free radical scavenging activities of various crude extracts of Moringa peregrina (Forssk.) Fiori leaves. Asian Pacific Journal of Tropical Biomedicine, 4(12), 964–970.

    Article  CAS  Google Scholar 

  22. Ruch, R. J., Cheng, S. J., & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10(6), 1003–1008. https://doi.org/10.1093/carcin/10.6.1003

    Article  CAS  PubMed  Google Scholar 

  23. Cicco, N., Lanorte, M. T., Paraggio, M., Viggiano, M., & Lattanzio, V. (2009). A reproducible, rapid and inexpensive Folin-Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchemical Journal, 91(1), 107–110. https://doi.org/10.1016/j.microc.2008.08.011

    Article  CAS  Google Scholar 

  24. Prasher, I. B., & Dhanda, R. K. (2017). GC-MS analysis of secondary metabolites of Endophytic Nigrospora sphaerica isolated from Parthenium hysterophorus. Int J Pharm Sci Rev Res, 44(1), 217–223.

    CAS  Google Scholar 

  25. McDonald, S., Prenzler, P. D., Antolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73(1), 73–84. https://doi.org/10.1016/S0308-8146(00)00288-0

    Article  CAS  Google Scholar 

  26. Parulekar Berde, C. V., Rawool, P. P., Bramhachari, P. V., & Berde, V. B. (2020). Endophytic microbes from medicinal plants and their secondary metabolites for agricultural significances. In Plant Microbiomes for Sustainable Agriculture (pp 97–111). Springer, Cham. https://doi.org/10.1007/978-3-030-38453-1_4

  27. Ravi, P., Somu, P., Acharya, D., Gomez, L. A., Thathapudi, J. J., Ramachandra, Y. L., ... & Lee, Y. R. (2022). Isolation and phytochemical screening of endophytic fungi isolated from medicinal plant Mappia foetida and evaluation of its in vitro cytotoxicity in cancer. Applied Biochemistry and Biotechnology, 1–17. https://doi.org/10.1007/s12010-022-03929-1

  28. Rai, H., & Sajwan, S. U. A. (2020). An overview of Dillenia indica and their properties. The Pharma Innovation Journal, 9(6), 41–44.

    Google Scholar 

  29. Mujeeb, F., Bajpai, P., & Pathak, N. (2014). Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. BioMed Research International, 2014. https://doi.org/10.1155/2014/497606

  30. Bisht, R., Sharma, D., & Agrawal, P. K. (2016). Antagonistic and antibacterial activity of endophytic fungi isolated from needle of Cupressus torulosa D. Don. Asian Journal Pharmaceutical and Clinical Research, 9(3), 282–288.

    CAS  Google Scholar 

  31. Elghaffar, R. Y. A., Amin, B. H., Hashem, A. H., & Sehim, A. E. (2022). Promising endophytic Alternaria alternata from leaves of Ziziphus spina-christi: Phytochemical analyses, antimicrobial and antioxidant activities. Applied Biochemistry and Biotechnology, 1–18. https://doi.org/10.1007/s12010-022-03959-9

  32. Bhardwaj, A., Sharma, D., Jadon, N., & Agrawal, P. K. (2015). Antimicrobial and phytochemical screening of endophytic fungi isolated from spikes of Pinus roxburghii. Archives of clinical microbiology6(3), 0–0

  33. Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67(4), 491–502. https://doi.org/10.1128/MMBR.67.4.491-502.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ye, Z., & Song, H. (2008). Antioxidant vitamins intake and the risk of coronary heart disease: Meta-analysis of cohort studies. European Journal of Preventive Cardiology, 15(1), 26–34. https://doi.org/10.1097/HJR.0b013e3282f11f95

    Article  Google Scholar 

  35. Chandra, P., & Arora, D. S. (2017). Antioxidant compounds derived from plants, description and mechanism of phytochemicals. Journal of Agroecology and Natural Resource Management, 4(1), 55–59.

    Google Scholar 

  36. Kefayati, Z., Motamed, S. M., Shojaii, A., Noori, M., & Ghods, R. (2017). Antioxidant activity and phenolic and flavonoid contents of the extract and subfractions of Euphorbia splendida Mobayen. Pharmacognosy Research, 9(4), 362. https://doi.org/10.4103/pr.pr_12_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garcia, A., Rhoden, S. A., Bernardi-Wenzel, J., Orlandelli, R. C., Azevedo, J. L., & Pamphile, J. A. (2012). Antimicrobial activity of crude extracts of endophytic fungi isolated from medicinal plant Sapindus saponaria L. Journal of Applied Pharmaceutical Science, 2(10), 035–040. https://doi.org/10.7324/JAPS.2012.21007

    Article  Google Scholar 

  38. Khan, F., Garg, V. K., Singh, A. K., & Kumar, T. (2018). Role of free radicals and certain antioxidants in the management of Huntington’s disease: A review. Journal of Analytical & Pharmaceutical Research, 7, 386–392.

    Article  Google Scholar 

  39. Gouda, S., Das, G., Sen, S. K., Shin, H. S., & Patra, J. K. (2016). Endophytes: A treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7, 1538. https://doi.org/10.3389/fmicb.2016.01538

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yadav, M., Yadav, A., & Yadav, J. P. (2014). In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pacific Journal of Tropical Medicine, 7, S256–S261. https://doi.org/10.1016/S1995-7645(14)60242-X

    Article  Google Scholar 

  41. Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856. https://doi.org/10.1021/jf030723c

    Article  CAS  PubMed  Google Scholar 

  42. Gautam, V. S., Singh, A., Kumari, P., et al. (2022). Phenolic and flavonoid contents and antioxidant activity of an endophytic fungus Nigrospora sphaerica (EHL2), inhabiting the medicinal plant Euphorbia hirta (dudhi) L. Archives of Microbiology, 204, 140. https://doi.org/10.1007/s00203-021-02650-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Caicedo, N. H., Davalos, A. F., Puente, P. A., Rodríguez, A. Y., & Caicedo, P. A. (2019). Antioxidant activity of exo-metabolites produced by Fusarium oxysporum: An endophytic fungus isolated from leaves of Otoba gracilipes. MicrobiologyOpen, 8(10), e903. https://doi.org/10.1002/mbo3.903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang, W. Y., Cai, Y. Z., Hyde, K. D., Corke, H., & Sun, M. (2007). Endophytic fungi from Nerium oleander L (Apocynaceae): Main constituents and antioxidant activity. World Journal of Microbiology and Biotechnology, 23, 1253–1263. https://doi.org/10.1007/s11274-007-9357-z

    Article  CAS  Google Scholar 

  45. Srinivasan, K., Jagadish, L. K., Shenbhagaraman, R., & Muthumary, J. (2010). Antioxidant activity of endophytic fungus Phyllosticta sp. isolated from Guazuma tomentosa. Journal of Phytology, 2(6),37–41.

  46. Mahmud, S. N., Sohrab, M. H., Begum, M. N., Rony, S. R., Sharmin, S., Moni, F., ... & Afroz, F. (2020). Cytotoxicity, antioxidant, antimicrobial studies and phytochemical screening of endophytic fungi isolated from Justicia gendarussa. Annals of Agricultural Sciences, 65(2), 225–232. https://doi.org/10.1016/j.aoas.2020.12.003

  47. Selim, K. A., El-Beih, A. A., Abdel-Rahman, T. M., & El-Diwany, A. I. (2014). Biological evaluation of endophytic fungus, Chaetomium globosum JN711454, as potential candidate for improving drug discovery. Cell Biochemistry and Biophysics, 68, 67–82. https://doi.org/10.1007/s12013-013-9695-4

    Article  CAS  PubMed  Google Scholar 

  48. Carr, A. C., & Maggini, S. (2017). Vitamin C and immune function. Nutrients, 9(11), 1211. https://doi.org/10.3390/nu9111211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine (pp. 405–424). Oxford University Press.

    Book  Google Scholar 

  50. Yarosz, E. L., & Chang, C. H. (2018). The role of reactive oxygen species in regulating T cell-mediated immunity and disease. Immune Network, 18(1), e14. https://doi.org/10.4110/in.2018.18.e14

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mishra, R., Kushveer, J. S., Khan, M., Imran, K., Pagal, S., Meena, C. K., & Venkateswara, S. V. (2020). 2, 4-Di-tert-butylphenol isolated from an endophytic fungus, Daldinia eschscholtzii, reduces virulence and quorum sensing in Pseudomonas aeruginosa. Frontiers in Microbiology, 11, 1668. https://doi.org/10.3389/fmicb.2020.0166-8

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gong, E. S., Li, B., Li, B., Podio, N. S., Chen, H., Li, T., ... & Liu, R. H. (2022). Identification of key phenolic compounds responsible for antioxidant activities of free and bound fractions of blackberry varieties' extracts by boosted regression trees. Journal of the Science of Food and Agriculture102(3), 984–994. https://doi.org/10.1002/jsfa.11432

  53. Hayashida-Soiza, G., Uchida, A., Mori, N., Kuwahara, Y., & Ishida, Y. (2008). Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain. Journal of Applied Microbiology, 105(5), 1672–1677. https://doi.org/10.1111/j.1365-2672.2008.03878.x

    Article  CAS  PubMed  Google Scholar 

  54. Shaw, B., Lambert, S., Wong, M. H., Ralston, J. C., Stryjecki, C., & Mutch, D. M. (2013). Individual saturated and monounsaturated fatty acids trigger distinct transcriptional networks in differentiated 3T3-L1 preadipocytes. Lifestyle Genomics, 6(1), 1–15. https://doi.org/10.1159/000345913

    Article  CAS  Google Scholar 

  55. Goradel, N. H., Eghbal, M. A., Darabi, M., Roshangar, L., Asadi, M., Zarghami, N., & Nouri, M. (2016). Improvement of liver cell therapy in rats by dietary stearic acid. Iranian Biomedical Journal, 20(4), 217. https://doi.org/10.7508/ibj.2016.04.005

    Article  PubMed Central  Google Scholar 

  56. Saint-Leger, D., Bague, A., Lefebvre, E., Cohen, E., & Chivot, M. (1986). A possible role for squalene in the pathogenesis of acne. II. In vivo study of squalene oxides in skin surface and intra-comedonal lipids of acne patients. British Journal of Dermatology, 114(5), 543–552. https://doi.org/10.1111/j.1365-2133.1986.tb04061.x

    Article  CAS  PubMed  Google Scholar 

  57. Amarowicz, R. (2009). Squalene: A natural antioxidant? European Journal of Lipid Science and Technology, 111(5), 411–412. https://doi.org/10.1002/ejlt.200900102

    Article  CAS  Google Scholar 

  58. Al-Marzoqi, A. H., Hameed, I. H., & Idan, S. A. (2015). Analysis of bioactive chemical components of two medicinal plants (Coriandrum sativum and Melia azedarach) leaves using gas chromatography-mass spectrometry (GC-MS). African Journal of Biotechnology, 14(40), 2812–2830. https://doi.org/10.5897/AJB2015.14956

    Article  Google Scholar 

  59. Staniek, A., Woerdenbag, H. J., & Kayser, O. (2008). Endophytes: Exploiting biodiversity for the improvement of natural product-based drug discovery. Journal of Plant Interactions, 3(2), 75–93. https://doi.org/10.1080/17429140801886293

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Botany, Panjab University Chandigarh, India, for providing infrastructure and instrumentation. Vijay Kumar is also thankful for the Senior Research Fellowship (File No. 09/135(0854)/2019-EMR-I) by the Council of Scientific and Industrial Research (CSIR), India, during research work.

Author information

Authors and Affiliations

Authors

Contributions

VK carried out experimental work and prepared the manuscript. IBP supervised the work and refined the manuscript.

Corresponding author

Correspondence to Vijay Kumar.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

The work is original; there is no plagiarism, and it has not been published anywhere.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Prasher, I.B. Phytochemical Analysis and Antioxidant Activity of Endophytic Fungi Isolated from Dillenia indica Linn.. Appl Biochem Biotechnol 196, 332–349 (2024). https://doi.org/10.1007/s12010-023-04498-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04498-7

Keywords

Navigation