Skip to main content

Advertisement

Log in

Antagonistic and plant-growth promoting novel Bacillus species from long-term organic farming soils from Sikkim, India

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Three bacteria namely Bacillus luciferensis K2, Bacillus amyloliquefaciens K12 and Bacillus subtilis BioCWB possessing plant growth promotion and biocontrol potential against phytopathogens and rice leaf folder were identified from organic soils of Sikkim, India. The results revealed significant higher production of phytohormones IAA (97.1 μg mL−1) and GA3 (10.6 μg mL−1) was found in K2, whereas BioCWB had higher phosphate solubilization (570.0 μg mL−1) efficacy and also possessed nitrogen fixation ability (5.34 log copy number mL−1 culture). All these bacteria had higher antagonistic activities against phytopathogens viz. Rhizoctonia solani, Fusarium proliferatum, Athelia rolfsii and Colletotrichum gloeosporioides and also had higher larvicidal activity against rice leaf folder Cnaphalocrocis medinalis (Guenne) under in vitro conditions. Molecular insights into the antagonistic mechanisms of Bacillus strains deciphered the presence of several antimicrobial peptides (ericin, subtilin, surfactin, iturin, bacilysin, subtilosin, fengycin and bacillomycin), volatiles (dimethyl disulphide, methyl-Furan, acetic acid, Z-1,3-pentadiene and 3-hexyn-2-ol) and soluble metabolites (9-octadecenamide, E-15-heptadecenal, E-3-eicosene and 5-octadecene). Furthermore, liquid microbial inoculum prepared using the bacterial strains (K2, K12 and BioCWB) were evaluated under glass house (rice) and field condition (capsicum), which significantly enhanced plant growth in rice and yield in capsicum compared to control. The present study revealed the combination of Bacillus spp. (K2, K12 and BioCWB) can be used as bio-inoculants for improving agricultural production in Sikkim. Moreover, for the first time, we demonstrated plant growth promoting (PGP) traits, antifungal and insecticidal properties of B. luciferensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott WS (1925) A method for computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Abo-Aba SEM, Soliman EAM, Nivien AA (2006) Enhanced production of extra cellular alkaline protease in Bacillus circulance through plasmid transfer. Res J Agric Biol Sci 16:526–530

    Google Scholar 

  • Anantha PS, Deventhiran M, Saravanan P, Anand D, Rajarajan S (2016) A comparative GC-MS analysis of bacterial secondary metabolites of Pseudomonas species. The Pharm Innov 5(part B 4):84

    CAS  Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation. Soil Biol Biochem 19(4):451–457

    CAS  Google Scholar 

  • Bongers RS, Veening JW, Van Wieringen M, Kuipers OP, Kleerebezem M (2005) Development and characterization of a subtilin-regulated expression system in Bacillus subtilis: strict control of gene expression by addition of subtilin. Appl Environ Microbiol 71(12):8818–8824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borrow A, Brian PW, Chester VE, Curtis PJ, Hemming HG, Henehan C, Jeffreys EG, Lloyd PB, Nixon IS, Norris GL, Radley M (1955) Gibberellic acids a metabolic product of the fungus Gibberella fujikuroi some observations on its production and isolation. J Sci Food Agric 6:340–348

    CAS  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65(5):497–503

    CAS  PubMed  Google Scholar 

  • Cappuccino JG, Sherman N (1992) Serial dilution agar plating procedure to quantitate viable cells. Microbiology: a laboratory manual, 3rd edn. The Benjamin Cummings Publishing Co., Inc, Bedwood, pp 77–82

  • Coosemans J (2004) Dimethyl disulphide (DMDS): a potential novel nematicide and soil disinfectant. In: VI International symposium on chemical and non-chemical soil and substrate disinfestation-SD2004 698, pp 57–64

  • Ding Y, Wang J, Liu Y, Chen S (2005) Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 99(5):1271–1281

    CAS  PubMed  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd-Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104

    PubMed  PubMed Central  Google Scholar 

  • Elanchezhiyan K, Keerthana U, Nagendran K, Prabhukarthikeyan SR, Prabakar K, Raguchander T, Karthikeyan G (2018) Multifaceted benefits of Bacillus amyloliquefaciens strain FBZ24 in the management of wilt disease in tomato caused by Fusarium oxysporum f. sp. lycopersici. Physiol Mol Plant Pathol 103:92–101

    Google Scholar 

  • Farag MA, Ryu CM, Sumner LW, Paré PW (2006) GC–MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67(20):2262–2268

    CAS  PubMed  Google Scholar 

  • Fisher SH (1999) Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Mol Microbiol 32(2):223–232

    CAS  PubMed  Google Scholar 

  • Fritsch J (2004) Dimethyl disulfide as a new chemical potential alternative to methyl bromide in soil disinfestation in France. In: VI international symposium on chemical and non-chemical soil and substrate disinfestation-SD2004 698 (pp 71–76)

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26(1):192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Plant growth and health promoting bacteria. Springer, Berlin, Heidelberg, pp 333–364

    Google Scholar 

  • Gumgumjee NH, Hajar AS (2015) Antibacterial activities and GC-MS analysis of phytocomponents of Ehretia abyssinica R. br. ex. Fresen. Int J Applied Biol Pharm Technol 6(2):236–241

    Google Scholar 

  • Hsu SC, Lockwood JL (1975) Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29(3):422–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9(9):868–877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CJ, Tsay JF, Chang SY, Yang HP, Wu WS, Chen CY (2012) Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag Sci 68(9):1306–1310

    CAS  PubMed  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20(6):619–626

    CAS  PubMed  Google Scholar 

  • IRRI, Standard Evaluation System (SES) of Rice (Revised) (2013) 5th Edition, Manila, Philippines

  • Jamal Q, Lee YS, Jeon HD, Kim KY (2018) Effect of plant growth-promoting bacteria Bacillus amyloliquefaciens y1 on soil properties, pepper seedling growth, rhizosphere bacterial flora and soil enzymes. Plant Protect Sci 54(3):1–9

    Google Scholar 

  • Jha TB, Saha PS (2017) Characterization of some Indian Himalayan Capsicums through floral morphology and EMA-based chromosome analysis. Protoplasma 254(2):921–933

    PubMed  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81(6):1001–1012

    CAS  PubMed  Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186(4):1084–1096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kour R, Ambardar S, Vakhlu J (2018) Plant growth promoting bacteria associated with corm of Crocus sativus during three growth stages. Lett Appl Microbiol 67(5):458–464

    CAS  PubMed  Google Scholar 

  • Kumar BL, Gopal DS (2015) Effective role of indigenous microorganisms for sustainable environment. 3 Biotech 5(6):867–876

    PubMed  PubMed Central  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167(8):493–499

    CAS  PubMed  Google Scholar 

  • Kumar S, Devi EL, Sharma SK, Ansari MA, Phurailatpam S, Ng TC, Singh TS, Prakash N, Kumar R, Kumawat N, Mandal D (2017a) Rice breeding strategies of North Eastern India for resilience to biotic and abiotic stresses: a review. ORYZA-An Int J Rice 54(1):1–12

    Google Scholar 

  • Kumar U, Panneerselvam P, Govindasamy V, Vithalkumar L, Senthilkumar M, Banik A, Annapurna K (2017b) Long-term aromatic rice cultivation effect on frequency and diversity of diazotrophs in its rhizosphere. Ecol Eng 101:227–236

    Google Scholar 

  • Kumar J, Pradhan M, Singhm N (2018a) Sustainable organic farming in Sikkim: an inclusive perspective, advances in smart grid and renewable energy. Springer, Singapore, pp 367–378

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018b) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lahlali R, Hijri M (2010) Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiol Lett 311(2):152–159

    CAS  PubMed  Google Scholar 

  • LeOra S (2007) Polo Plus, probit and logit analysis: user´s guide computer program version 2.0. LeOra Software, Berkeley, CA

  • Macfadyen S, McDonald G, Hill MP (2018) From species distributions to climate change adaptation: knowledge gaps in managing invertebrate pests in broad-acre grain crops. Agric Ecosyst Environ 253:208–219

    Google Scholar 

  • Maharana I, Rai SC, Sharma E (2000) Environmental economics of the Khangchendzonga National Park in the Sikkim Himalaya, India. GeoJournal 50(4):329–337

    Google Scholar 

  • Manikandan R, Saravanakumar D, Rajendran L, Raguchander T, Samiyappan R (2010) Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biol Control 54(2):83–89

    Google Scholar 

  • Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Uthandi S, Thankappan S, Gupta VK, Singh BP (2017) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis. PloS One 12(10):e0186234

    PubMed  PubMed Central  Google Scholar 

  • Murphy JAMES, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    CAS  Google Scholar 

  • Panda B, Rahman H, Panda J (2016) Phosphate solubilizing bacteria from the acidic soils of Eastern Himalayan region and their antagonistic effect on fungal pathogens. Rhizosphere 2:62–71

    Google Scholar 

  • Panneerselvam P, Kumar U, Sahu S, Mohapatra SD, Dangar TK, Parameswaran C, Jahan A, Senapati A, Govindharaj GPP (2018) Larvicidal potential of Skermanella sp. against rice leaf folder (Cnaphalocrosis medinalis Guenee) and pink stem borer (Sesamia inferens Walker). J Invertebr Pathol 157:74–79

    PubMed  Google Scholar 

  • Pathak H, Mohanty S, Jain N, Bhatia A (2010) Nitrogen, phosphorus, and potassium budgets in Indian agriculture. Nutr Cycl Agroecosyst 86(3):287–299

    CAS  Google Scholar 

  • Posada LF, Álvarez JC, Romero-Tabarez M, de-Bashan L, Villegas-Escobar V (2018) Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems. Microbiol Res 217:69–80

    CAS  PubMed  Google Scholar 

  • Prabhukarthikeyan R, Saravanakumar D, Raguchander T (2014) Combination of endophytic Bacillus and Beauveria for the management of Fusarium wilt and fruit borer in tomato. Pest Manag Sci 70(11):1742–1750

    CAS  PubMed  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paul WP, Bais HP (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integrative Biol 3(2):130–138

    Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100(8):4927–4932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24(4):814–842

    CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    CAS  PubMed  Google Scholar 

  • Sridhar R, Singh UD (2001) Genetic and pathogenic diversity of the rice blast pathogen, in major fungal diseases of rice. Springer, Dordrecht, pp 1–7

    Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbial 56:4845–4857

    Google Scholar 

  • Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62(2):625–630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Team RC (2000) R language definition. Vienna, Austria: R foundation for statistical computing

  • Thorn RMS, Greenman J (2012) Microbial volatile compounds in health and disease conditions. J Breath Res 6(2):024001

    PubMed  PubMed Central  Google Scholar 

  • Tyagi S, Kim K, Cho M, Lee KJ (2019) Volatile dimethyl disulfide affects root system architecture of Arabidopsis via modulation of canonical auxin signaling pathways. Environ Sustain 2019:1–6

    Google Scholar 

  • Tyc O, Song C, Dickschat JS, Vos M, Garbeva P (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol 25(4):280–292

    CAS  PubMed  Google Scholar 

  • Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68(12):6210–6219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vinodkumar S, Nakkeeran S, Renukadevi P, Malathi VG (2017) Biocontrol potentials of antimicrobial peptide producing Bacillus species: multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Front Microbiol 8:446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright ES (2016) Using DECIPHER v2. 0 to analyze big biological sequence data in R. R J 8:1

    Google Scholar 

  • Yadav SN, Chandra R, Khura TK, Chauhan NS (2013) Energy input–output analysis and mechanization status for cultivation of rice and maize crops in Sikkim. Agric Eng Int CIGR J 15(3):108–116

    Google Scholar 

  • Yogeswari S, Ramalakshmi S, Neelavathy R, Muthumary J (2012) Identification and comparative studies of different volatile fractions from Monochaetia kansensis by GCMS. Glob J Pharmacol 6(2):65–71

    Google Scholar 

  • Zou CS, Mo MH, Gu YQ, Zhou JP, Zhang KQ (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39(9):2371–2379

    CAS  Google Scholar 

Download references

Acknowledgements

The first author thanks Director, ICAR-National Rice Research Institute, Odisha, India for providing all the support for carrying out this research work and special thanks to DBT, India for financial support.

Funding

We are grateful to the Department of Biotechnology, Government of India for promotion of Biotechnology in the North Eastern Region of India through Biotech Consortium India Limited and giving grants (BT/PR16291/NER/95/185/2015) for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Periyasamy Panneerselvam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 129 kb)

Supplementary material 2 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panneerselvam, P., Senapati, A., Kumar, U. et al. Antagonistic and plant-growth promoting novel Bacillus species from long-term organic farming soils from Sikkim, India. 3 Biotech 9, 416 (2019). https://doi.org/10.1007/s13205-019-1938-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1938-7

Keywords

Navigation