Skip to main content
Log in

Molecular characterization, modeling, and docking analysis of late phytic acid biosynthesis pathway gene, inositol polyphosphate 6-/3-/5-kinase, a potential candidate for developing low phytate crops

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The coding sequence of inositol polyphosphate 6-/3-/5-kinase (GmIPK2) gene was identified and cloned from popular Indian soybean cultivar Pusa-16. The clone was predicted to encode 279 amino acids long, 30.97 kDa protein. Multiple sequence alignment revealed an inositol phosphate-binding motif, PxxxDxKxG throughout the IPK2 sequences along with other motifs unique to inositol phosphate kinase superfamily. Eight α-helices and eight β-strands in antiparallel β-sheets arrangement were predicted in the secondary structure of GmIPK2. The temporal analysis of GmIPK2 revealed maximum expression in the seed tissues during later stages of development while spatially the transcript levels were lowest in leaf and stem tissues. Endosperm-specific cis-regulatory motifs (GCN4 and Skn_1) which support high levels of expression, as observed in the developing seeds, were detected in its promoter region. The protein structure of GmIPK2 was modeled based on the crystal structure of inositol polyphosphate multikinase from Arabidopsis thaliana (PDB:4FRF) and subsequently docked with inositol phosphate ligands (PDB: 5GUG-I3P and PDB: 4A69-I0P). Molecular dynamics (MD) simulation established the structural stability of both, modeled enzyme and ligand-bound complexes. Docking in combination with trajectory analysis for 50 ns MD run confirmed the participation of Lys105, Lys126 and Arg153 residues in the formation of a network of hydrogen bonds to stabilize the ligand-receptor interaction. Results of the present study thus provide valuable information on structural and functional aspects of GmIPK2 which shall assist in strategizing our long-term goal of achieving phytic acid reduction in soybean by genetic modification of its biosynthetic pathway to develop a nutritionally enhanced crop in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signalling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Accelrys Software Inc (2013) Discovery studio modeling environment, release 4.0. Accelrys Software Inc., San Diego

    Google Scholar 

  • Agarwal R, Mumtaz H, Ali N (2009) Role of inositol polyphosphates in programmed cell death. Mol Cell Biochem 328:155–165

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Shukla V, Bhati KK, Kaur M, Sharma S, Singh A, Mantri S, Pandey AK (2015) Hormonal regulation and expression profiles of wheat genes involved during phytic acid biosynthesis pathway. Plants (Basel) 4:298–319

    Article  CAS  PubMed Central  Google Scholar 

  • Ali N, Paul S, Gayen D, Sarkar SN, Datta SK, Datta K (2013a) Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1). PLoS One 8:e68161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali N, Paul S, Gayen D, Sarkar SN, Datta SK, Datta K (2013b) RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice. PLoS One 6:12

    Google Scholar 

  • Arguello-Astorga GR, Herrera-Estrella LR (1996) Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways. Plant Physiol 112:1151–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhati KK, Aggarwal S, Sharma S, Mantri S, Singh S, Bhalla S, Kaur J, Tiwari S, Roy J, Tuli R, Pandey AK (2014) Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (Triticum aestivum L.). Plant Sci 224:74–85

    Article  CAS  PubMed  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modeling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibikova TN, Zhigiler A, Gilroy S (1997) Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta 203:495–505

    Article  CAS  PubMed  Google Scholar 

  • Bilyeu Kristin D, Zeng P, Coello P, Zhang Zhanyuan J, Krishnan Hari B, Bailey A, Beuselinck Paul R, Polacco Joe C (2008) Quantitative conversion of phytate to inorganic phosphorus in soybean seeds expressing a bacterial phytase. Plant Physiol 146:468–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond CS (2003) TopDraw: a sketchpad for protein structure topology cartoons. Bioinformatics 19:311–312

    Article  CAS  PubMed  Google Scholar 

  • Brearley CA, Hanke DE (1996a) Inositol phosphates in barley (Hordeum vulgare L.) aleurone tissue are stereochemical similar to the products of breakdown of Ins P6 in vitro by wheat bran phytase. Biochem J 318:279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brearley CA, Hanke DE (1996b) Metabolic evidence for the order of addition of individual phosphate esters to the myo-inositol moiety of inositol hexakisphosphate in the duckweed Spirodela polyrhiza L. Biochem J 314:227–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res 41:W340–W348

    Article  Google Scholar 

  • Chou KC, Shen HB (2007) MemType-2L: a Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem Biophys Res Commun 360:339–345

    Article  CAS  PubMed  Google Scholar 

  • Cichy K, Raboy V (2009) Evaluation and development of low-phytate crops. In: Hari Krishnan B (eds) Crop Science Society of America, Soil Science Society of America. American Society of Agronomy, Madison, pp 177–200

    Google Scholar 

  • Cooper JA, Esch FS, Taylor SS, Hunter T (1984) Phosphorylation sites in enolase and lactate dehydrogenase utilized by tyrosine protein kinases in vivo and in vitro. Biol Chem 259:7835–7841

    CAS  Google Scholar 

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Mol Biol 300:1005–1016

    Article  CAS  Google Scholar 

  • Feldbrugge M, Hahlbrock K, Weisshaar B (1996) The transcriptional regulator CPRF1: expression analysis and gene structure. Mol Gen Genet 251:619–627

    CAS  PubMed  Google Scholar 

  • Felle HH, Hepler PK (1997) The cytosolic Ca2+ concentration gradient of Sinapis alba root hairs as revealed by Ca2+ selective microelectrode tests and fura-dextran ratio imaging. Plant Physiol 114:39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng X, Yoshida KT (2004) Molecular approaches for producing low-phytic-acid grains in rice. Plant Biotechnol 21:183–189

    Article  CAS  Google Scholar 

  • Ferrè F, Clote P (2005) DiANNA: a web server for disulfide connectivity prediction. Nucleic Acids Res 33:W230–W232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fileppi M, Galasso I, Tagliabue G, Daminati M, Campion B, Doria E, Sparvoli F (2010) Characterisation of structural genes involved in phytic acid biosynthesis in common bean (Phaseolus vulgaris L.). Mol Breed 25:453–470

    Article  CAS  Google Scholar 

  • Franklin-Tong VE, Drobak BK, Allan AC, Trewavas AJ (1996) Growth of pollen tubes of Papaver rhoeas is regulated by a slow moving calcium wave propagated by inositol 1,4,5-trisphosphate. Plant Cell 8:1305–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederick JP, Mattiske D, Wofford JA, Megosh LC, Drake LY, Chiou ST, Hogan BLM, York JD (2005) An essential role for an inositol polyphosphate multikinase, Ipk2, in mouse embryogenesis and second messenger production. Proc Natl Acad Sci 102:8454–8459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, pp 571–607

  • Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  • Gill SC, Von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182:319–326

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Guruprasad K, Reddy BVB, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–161

    Article  CAS  PubMed  Google Scholar 

  • Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC (2000) Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102:721–729

    Article  CAS  PubMed  Google Scholar 

  • Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem 374:166

    Google Scholar 

  • Holmes W, Jogl G (2006) Crystal structure of inositol phosphate multikinase 2 and implications for substrate specificity. Biol Chem 281:38109–38116

    Article  CAS  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucl Acids Res 35:W585–W587

    Article  PubMed  PubMed Central  Google Scholar 

  • Hua S, Sun Z (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17:721–728

    Article  CAS  PubMed  Google Scholar 

  • Ikai AJ (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88:1895–1898

    CAS  PubMed  Google Scholar 

  • Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2:327–338

    Article  CAS  PubMed  Google Scholar 

  • Josefsen L, Bohn L, Sorensen M, Rasmussen S (2007) Characterization of a multifunctional inositol phosphate kinase from rice and barley belonging to the ATP-grasp superfamily. Gene 397:114–125

    Article  CAS  PubMed  Google Scholar 

  • Kawabata T (2003) MATRAS: a program for protein 3D structure comparison. Nucleic Acids Res 31:3367–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SR, Kim Y, An G (1993) Identification of methyl jasmonate and salicylic acid response elements from the nopaline synthase (nos) promoter. Plant Physiol 103:97–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaholz B, Moras D (2002) C–H … O hydrogen bonds in the nuclear receptor RARgamma—a potential tool for drug selectivity. Structure 10:1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Kozakov D, Grove LE, Hall DR, Bohnuud T, Mottarella SE, Luo L, Xia B, Beglov D, Vajda S (2015) The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc 10:733–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan V, Jain P, Tripathi V, Hada A, Manickavasagam M, Ganapathi A, Rai RD, Sachdev A (2015) Molecular modeling and in-silico characterization of Glycine max inositol (1,3,4) tris 5/6 kinase-1 (Gmitpk1)—a potential candidate gene for developing low phytate transgenics. Plant Omics 8:381–391

    CAS  Google Scholar 

  • Kuwano M, Mimura T, Takaiwa F, Yoshida KT (2009) Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene using the 18-kDa oleosin promoter. Plant Biotechnol 7:96–105

    Article  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucl Acids Res 44:W242–W245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2∆∆C(T) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lois R, Dietrich A, Hahlbrock K, Schulz W (1989) A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO J 8:1641–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Ochoa L, Acevedo-Hernández G, Martínez-Hernández A, Argüello-Astorga G, Herrera-Estrella L (2007) Structural relationships between diverse cis-acting elements are critical for the functional properties of a rbcS minimal light regulatory unit. J Exp Bot 58:4397–4406

    Article  CAS  PubMed  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB III, Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: Φ,Ψ and Cβ deviation. Proteins 50:437–450

    Article  CAS  PubMed  Google Scholar 

  • Majerus PW (1992) Inositol phosphate biochemistry. Annu Rev Biochem 61:225–250

    Article  CAS  PubMed  Google Scholar 

  • Majerus PW (1996) Inositols do it all. Genes Dev 10:1051–1053

    Article  CAS  PubMed  Google Scholar 

  • Malho R (1998) Role of 1,4,5-inositol trisphosphate-induced Ca2+ release in pollen tube orientation. Sex Plant Reprod 11:231–235

    Article  CAS  Google Scholar 

  • Matsuno K, Fujimura T (2014) Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice. Plant Sci 217–218:152–157

    Article  CAS  PubMed  Google Scholar 

  • Mongkolsiriwatana C, Pongtongkam P, Peyachoknagul S (2009) In silico promoter analysis of photoperiod-responsive genes identified by DNA microarray in rice (Oryza sativa L.). Kasetsart J (Nat Sci) 43:164–177

    CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 16:2785–2791

    Article  CAS  Google Scholar 

  • Murphy AM, Otto B, Brearley CA, Carr JP, Hanke DE (2008) A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant J 56:638–652

    Article  CAS  PubMed  Google Scholar 

  • Neumann GM, Thomas I, Polya GM (1996) Identification of the site on potato carboxypeptidase inhibitor that is phosphorylated by plant calcium-dependent protein kinase. Plant Sci 114:45–51

    Article  CAS  Google Scholar 

  • Nguyen T, Sherratt PJ, Cecil B, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa K, Toker A, Johannes FJ, Songyang Z, Cantley LC (1997) Determination of the specific substrate sequence motifs of protein kinase C isozymes. Biol Chem 272:952–960

    Article  CAS  Google Scholar 

  • Niu J, Wang J, Hu H, Chen Y, An J, Cai J, Sun R, Sheng A, Liu X, Lin S (2016) Cross-talk between freezing response and signalling for regulatory transcriptions of MIR475b and its targets by miR475b promoter in Populous suaveolens. Sci Rep 6:20648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes ACS, Vianna GR, Cuneo F, Amaya-Farfan J, de Capdeville G, Rech EL, Aragao FJL (2006) RNAi mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224:125–132

    Article  CAS  PubMed  Google Scholar 

  • Odom AR, Stahlberg A, Wente SR, York JD (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287:2026–2029

    Article  CAS  PubMed  Google Scholar 

  • Omasits U, Ahrens CH, Müller S, Wollscheid B (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30:884–886

    Article  CAS  PubMed  Google Scholar 

  • Onodera Y, Suzuki A, Wu CY, Washida H, Takaiwa F (2001) A rice functional transcriptional activator, RISBZ1, responsible for endosperm-specific expression of storage protein genes through GCN4 motif. J Biol Chem 276:14139–14152

    Article  CAS  PubMed  Google Scholar 

  • Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Hau J, Martin O, Kuznetsov D, Falquet L (2007) MyHits: improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res 35:W433–W437

    Article  PubMed  PubMed Central  Google Scholar 

  • Pashou EE, Litou ZI, Liakopoulos TD, Hamodrakas SJ (2004) WaveTM: wavelet-based transmembrane segment prediction. In Silico Biol 4:127–131

    CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, Shipley MA, Rivers BA, Cresti M, Hepler PK (1994) Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell 6:1815–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plevin MJ, Mills MM, Ikura M (2005) The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem Sci 30:66–69

    Article  CAS  PubMed  Google Scholar 

  • Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raboy V, Dickinson DB (1987) The timing and rate of phytic acid accumulation in developing soybean seeds. Plant Physiol 85:841–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reehana N, Ahamed AP, Ali DM, Suresh A, Kumar RA, Thajuddin N (2013) Structure based computational analysis and molecular phylogeny of C-Phycocyanin gene from the selected cynobacteria. Int J Biol Vet Agric Food Eng 7:47–51

    Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) Emboss: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  • Roberts DM, Harmon AC (1992) Calcium modulated proteins: targets of intracellular calcium signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol 43:375–414

    Article  CAS  Google Scholar 

  • Roche DB, Buenavista MT, McGuffin LJ (2013) The FunFOLD2 server for the prediction of protein-ligand interactions. Nucleic Acids Res 41:W303–W307

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368

    Article  CAS  PubMed  Google Scholar 

  • Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70% accuracy. Mol Biol 232:584–599

    Article  CAS  Google Scholar 

  • Rost B, Casadio R, Fariselli P (1996) Refining neural network predictions for helical transmembrane proteins by dynamic programming. Proc Int Conf Intell Syst Mol Biol 4:192–200

    CAS  PubMed  Google Scholar 

  • Rouster J, Leah R, Mundy J, Cameron-Mills V (1997) Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J 11:513–523

    Article  CAS  PubMed  Google Scholar 

  • Saiardi A, Erdjument-Bromage H, Snowman A, Tempst P, Snyder SH (1999) Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr Biol 9:1323–1326

    Article  CAS  PubMed  Google Scholar 

  • Saiardi A, Caffrey JJ, Snyder SH, Shears SB (2000) Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. Biol Chem J 275:24686–24692

    Article  CAS  Google Scholar 

  • Schwartz R, Ting CS, King J (2001) Whole proteome pI values correlate with subcellular localizations of proteins for organisms within the three domains of life. Genome Res 11(5):703–709

    Article  CAS  PubMed  Google Scholar 

  • Sessa G, Meller Y, Fluhr R (1995) A GCC element and a G-box motif participate in ethylene-induced expression of the PRB-1b gene. Plant Mol Biol 28:145–153

    Article  CAS  PubMed  Google Scholar 

  • Shears SB (2004) How versatile are inositol phosphate kinases? Biochem J 377:265–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X, Xiao H, Ranallo R, Wu WH, Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299:112–114

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Steger DJ, Haswell ES, Miller AL, Wente SR, O’Shea EK (2003) Regulation of chromatin remodeling by inositol polyphosphates. Science 299:114–116

    Article  CAS  PubMed  Google Scholar 

  • Steinberg SF (2008) Structural basis of protein kinase C isoform function. Physiol Rev 88:1341–1378

    Article  CAS  PubMed  Google Scholar 

  • Stevenson-Paulik J, Odom AR, York JD (2002) Molecular and biochemical characterization of two plant inositol polyphosphate 6-/3-/5-kinases. Biol Chem J 277:42711–42718

    Article  CAS  Google Scholar 

  • Stevenson-Paulik J, Bastidas GJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci 102:12612–12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles AR (2007) Identification and characterization of late pathway enzymes in phytic acid biosynthesis in Glycine max, Dissertation, Virginia Polytechnic Institute and State University

  • Stiles A, Qian X, Shears S, Grabau E (2008) Metabolic and signaling properties of an ITPK gene family in Glycine max. FEBS Lett 582:1853–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto T, Kawasaki T, Kato T, Whittier RF, Shibata D, Kawamura Y (1992) cDNA sequence and expression of a phosphoenolpyruvate carboxylase gene from soybean. Plant Mol Biol 20:743–747

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Thompson M, Lin G, Butler H, Gao Z, Thornburgh S, Yau K, Smith D, Shukla V (2007) Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: Molecular and biochemical characterization. Plant Physiol 144:1278–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Tanaka K, Kuwano M, Yoshida K (2007) Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): Implications for the phytic acid biosynthetic pathway. Gene 405:55–64

    Article  CAS  PubMed  Google Scholar 

  • Sweetman D, Johnson S, Caddick S, Hanke D, Brearley C (2006) Characterization of an Arabidopsis inositol 1,3,4,5,6-pentakisphosphate 2-kinase (AtIPK1). Biochem J 394:95–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweetman D, Stavridou I, Johnson S, Green P, Caddick S, Brearley C (2007) Arabidopsis thaliana inositol 1,3,4-trisphosphate 5/6-kinase 4 (AtITPK4) is an outlier to a family of ATP-grasp fold proteins from Arabidopsis. FEBS Lett 581:4165–4171

    Article  CAS  PubMed  Google Scholar 

  • Takaiwa F, Yamanouchi U, Yoshihara T, Washida H, Tanabe F, Kato A, Yamada K (1996) Characterization of common cis-regulatory elements responsible for the endosperm-specific expression of members of the rice glutelin multigene family. Plant Mol Biol 30:1207–1221

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Comput Chem 31:455–461

    CAS  Google Scholar 

  • Turner PJ (2005) XMGRACE, version 5.1.19. center for coastal and land-margin research. Oregon Graduate Institute of Science and Technology, Beaverton

    Google Scholar 

  • Tuteja JH, Clough SJ, Chan WC, Vodkin LO (2004) Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in glycine max. Plant Cell 16:819–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace IM, Sullivan O, Higgins DG, Notredame C (2006) M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res 34:1692–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Washida H, Wu CY, Suzuki A, Yamanouchi U, Akihama T, Harada K, Takaiwa F (1999) Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol Biol 40:1–12

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb B, Sali A (2016) Comparative protein structure modeling using modeller. Curr Protoc Bioinform 54:5.6.1–5.6.37

    Article  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu CY, Adach T, Hatano T, Washida H, Suzuki A, Takaiwa F (1998) Promoters of rice seed storage protein genes direct endosperm-specific gene expression in transgenic rice. Plant Cell Physiol 39:885–889

    Article  CAS  Google Scholar 

  • Wymer CL, Bibikova TN, Gilroy S (1997) Cytoplasmic free calcium distribution during the development of root hairs of Arabidopsis thaliana. Plant J 12:427–439

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Brearley CA, Lin WH, Wang Y, Ye R, Mueller-Roeber B, Xu ZH, Xue HW (2005) A role of Arabidopsis inositol polyphosphate kinase, AtIPK2α, in pollen germination and root growth. Plant Physiol 137:94–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Mundy J, Chua NH (1989) Four tightly linked rab genes are differentially expressed in rice. Plant Mol Biol 14:29–39

    Article  Google Scholar 

  • York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100

    Article  CAS  PubMed  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZB, Yang G, Arana F, Chen Z, Li Y, Xia HJ (2007) Arabidopsis inositol polyphosphate 6-/3-Kinase (AtIpk2β) is involved in axillary shoot branching via auxin signaling. Plant Physiol 144:942–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support for the work was provided by funding from the National Funds for Basic, Strategic and Frontier Application Research in Agriculture [Grant No. NFBSFARA/RNAi-2011/2011-12], ICAR, Government of India. The authors would also like to thankfully acknowledge the Supercomputing Facility for Bioinformatics and Computational Biology at IIT Delhi for the use of its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Sachdev.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4216 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punjabi, M., Bharadvaja, N., Sachdev, A. et al. Molecular characterization, modeling, and docking analysis of late phytic acid biosynthesis pathway gene, inositol polyphosphate 6-/3-/5-kinase, a potential candidate for developing low phytate crops. 3 Biotech 8, 344 (2018). https://doi.org/10.1007/s13205-018-1343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1343-7

Keywords

Navigation