Skip to main content

Advertisement

Log in

Adaptive physiological response, carbon partitioning, and biomass production of Withania somnifera (L.) Dunal grown under elevated CO2 regimes

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Winter cherry or Ashwagandha (Withania somnifera) is an important medicinal plant used in traditional and herbal medicine system. Yet, there is no information available on response of this plant to changing climatic conditions particularly elevated atmospheric CO2 concentrations. Therefore, we conducted an experiment to examine the effect of elevated CO2 concentrations (ECs) on Withania somnifera. The variations in traits of physiological adaptation, net primary productivity, carbon partitioning, morphology, and biomass in response to elevated CO2 concentrations (ambient, 600 and 800 µmol mol−1) during one growth cycle were investigated within the open top chamber (OTC) facility in the foothill of the Himalayas, Dehardun, India. ECs significantly increased photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, soil respiration, net primary productivity and the carbon content of plant tissues (leaf, stem, and root), and soil carbon. Furthermore, ECs significantly enhanced biomass production (root and shoot), although declined night leaf respiration. Overall, it was summarized that photosynthesis, stomatal conductance, water use efficiency, leaf, and soil carbon and biomass increased under ECs rendering the physiological adaptation to the plant. Increased net primary productivity might facilitate mitigation effects by sequestering elevated levels of carbon dioxide. We advocate further studies to investigate the effects of ECs on the accumulation of secondary metabolites and health-promoting substances of this as well as other medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adair EC, Reich PB, Tsost JJ, Hobbie SE (2011) Elevated CO2 stimulates grassland soil respiration by increasing carbon inputs rather than by enhancing soil moisture. Glob Change Biol 17:3546–3563

    Article  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)—a meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Amthor JS (1997) Plant respiratory responses to elevated CO2 partial pressure. In: Allen LH, Kirkham MB, Olszyk DM, Whitman CE (Eds) Advances in carbon dioxide effects research. Madison: ASA, CSSA and SSSA 35–77 American Society of Agronomy Special Publication (proceedings of 1993 ASA Symposium, Cincinnati, OH)

    Google Scholar 

  • Amthor JS, Koch GW, Bloom AJ (1992) CO2 Inhibits respiration in leaves of Rumex crispus L. Plant Physiol 98:757–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 32:834–838

    Article  CAS  Google Scholar 

  • Buckley LB, Nufio CR, Kingsolver JG (2013) Phenotypic clines, energy balances and ecological responses to climate change. J Anim Ecol 83:41–50

    Article  PubMed  Google Scholar 

  • Bunn C, Laderach P, Ovalle-Rivera O, Kirschke D (2015) A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Clim Change 129:89–101

    Article  Google Scholar 

  • Chaturvedi AK, Vashistha RK, Rawat N, Prasad P, Nautiyal MC (2009) Effect of CO2 enrichment on photosynthetic behaviour of Podophyllum Hexandrum, an endangered medicinal herb. J Am Sci 5:113–118

    Google Scholar 

  • Cheng W, Sims, DA, Luo Y, Johnson DW, Ball JT, Coleman JS (2000) Carbon budgeting in plant-soil mesocosms under elevated CO2: locally missing carbon? Glob Change Biol 6:99–110

    Article  Google Scholar 

  • Convention on Biological Diversity (CBD) (2014) https://www.cbd.int/climate/intro.shtml. Accessed 3 Mar 2018

  • Dlugokencky E, Tans P (2017) Trends in atmospheric carbon dioxide. National Oceanic & Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL). http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 3 Mar 2018

  • Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol 48:609–639

    Article  CAS  PubMed  Google Scholar 

  • Drake BG, Azcón-Bieto J, Berry JA, Bunce J, Dijkstra P, Farrar J, Koch GW, Gifford R, Gonzàlez-Meler MA, Lambers H et al (1999) Does elevated CO2 inhibit plant mitochondrial respiration in green plants. Plant Cell Environ 22:649–657

    Article  CAS  Google Scholar 

  • Ghasemzadeh A, Jaafar HZE, Rahmat A (2010) Synthesis of phenolics and flavonoids in ginger (Zingiber officinale Roscoe) and their effects on photosynthesis rate. Int J Mol Sci 11:4539–4555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishna R, Mathangi JR, Bala G, Ravindranath NH (2011) Climate change and Indian Forest. Curr Sci 101:25–29

    Google Scholar 

  • Griffin KL, Ball JT, Strain BR (1996) Direct and indirect effects of elevated CO2 on whole-shoot respiration in ponderosa pine seedlings. Tree Physiol 16:33–41

    Article  PubMed  Google Scholar 

  • Hamilton JG, Thomas RB, Delucia EH (2001) Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem. Plant Cell Environ 24:975–982

    Article  CAS  Google Scholar 

  • Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–347

    Article  CAS  Google Scholar 

  • Ibrahim MH, Jaafar HZ (2011) Increased carbon dioxide concentration improves the antioxidative properties of the Malaysian herb Kacip Fatimah (Labisia pumila). Molecules 16:6068–6081

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim MH, Hawa ZE, Jaafar HZ (2012) Impact of elevated carbon dioxide on primary, secondary metabolites and antioxidant responses of Eleais guineensis Jacq. (Oil Palm) seedlings. Molecules 17:5195–5211

    Article  CAS  PubMed  Google Scholar 

  • Idso SB, Kimball BA, Pettit GR, Garner LC, Backhaus RA (2000) Effects of atmospheric CO2 enrichment on the growth and development of Hymenocallis littoralis (Amaryllidaceae) and the concentrations of several antineoplastic and antiviral constituents of its bulbs. Am J Bot 87:769–773

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2007) Inter Governmental Panel on Climate Change. Summary Report of the working group of IPCC Paris

  • Keidel L, Kammann C, Grünhage L, Moser G, Müller C (2015) Positive feedback of elevated CO2 on soil respiration in late autumn and winter. Biogeosciences 12:1257–1269

    Article  CAS  Google Scholar 

  • Lin W, Wang D (1998) Effects of elevated CO2 on growth and carbon partitioning in rice. Chin Sci Bull 43:1982–1986

    Article  CAS  Google Scholar 

  • Melillo JM, Mcguire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  CAS  Google Scholar 

  • Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14:2373–2393

    Article  CAS  PubMed  Google Scholar 

  • Morison JIL, Gifford RA (1984) Plant growth and water use with limited water supply in high CO2 concentrations: leaf area, water use, and transpiration. Aust J Plant Physiol 11:361–374

    Article  Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 do photosynthetic and productivity data from FACE experiments support early predictions. New Phytol 162:253–280

    Article  Google Scholar 

  • Oliveira VF, Zaidan LBP, Braga MR, Aidar MPM, Carvalho MAM (2010) Elevated CO2 atmosphere promotes plant growth and inulin production in the cerrado species Vernonia herbacea. Funct Plant Biol 37:223–231

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Syst 37:637–639

    Article  Google Scholar 

  • Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Technical summary Box TS.6. The main projected impacts for regions, in IPCC AR4 WG2 pp 59–63

  • Patwardhan B, Panse GT, Kulkarni PH (1998) Ashwagandha a review. J Natl Integr Med Assoc 30:7–11

    Google Scholar 

  • Pendall E, Leavitt SW, Brooks T, Kimball BA, Pinter PJ, Wall GW, LaMorte RL, Wechsung G, Wechsung F, Adamsen F, Matthias AD, Thompson TL (2001) Elevated CO2 stimulates soil respiration in a FACE wheat field. Basic Appl Ecol 2:193–201

    Article  CAS  Google Scholar 

  • Pinelli P, Loreto F (2003) (CO2)–C-12 emission from different metabolic pathways measured in illuminated and darkened C-3 and C-4 leaves at low, atmospheric and elevated CO2 concentration. J Exp Bot 54:1761–1769

    Article  CAS  PubMed  Google Scholar 

  • Prajapati ND, Purohit SS, Sharma AK, Kumar T (2003) A handbook of medicinal plants: a complete source book. Jodhpur: Agrobios India p 756

    Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B Chem Phys Meteorol 44:81–99

    Article  Google Scholar 

  • Saadi S, Todorovic M, Tanasijevic L, Pereira LS, Pizzigalli C, Lionello P (2015) Climate change and Mediterranean agriculture: impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agric Water Manag 147:103–115

    Article  Google Scholar 

  • Saravanan S (2014) Gas exchange characteristics in Tectona grandis L. clones under varying concentrations of CO2 levels. J Stress Physiol Biochem 10:122–133

    Google Scholar 

  • Saravanan S, Karthi S (2014) Effect of elevated CO2 on growth and biochemical changes in Catharanthus roseus- a valuable medicinal herb. World J Pharm Pharm Sci 3:411–422

    Google Scholar 

  • Sattler R, Rutishauser R (1997) The fundamental relevance of morphology and morphogenesis to plant research. Ann Bot 80:571–582

    Article  Google Scholar 

  • Singh P, Guleri R, Singh V, Kaur G, Katari H, Singh B, Kaura G, Kaul SC, Wadhwa R, Pati PK (2015) Biotechnological interventions in Withania somnifera (L.) Dunal. Biotechnol Genet Eng Rev 19:1–20

    Article  CAS  Google Scholar 

  • Singh H, Sharma R, Verma A, Kumar M, Kumar S (2016) Can atmospheric CO2 enrichment alter growth dynamics, structure and functioning of medicinal and aromatic plant (Tulsi)? An approach to understand adaptation and mitigation potential of medicinal and aromatic plants in wake of climate change scenario. In: Annual session of the national academy of sciences India, jointly organized by National Academy of Sciences India and Uttarakhand State Council for Science and Technology (UCOST), Dehradun, 2–4 Dec 2016, pp 94

  • Singh H, Savita A, Sharma R, Sinha S, Kumar M, Kumar P, Verma A, Sharma SK (2017) Physiological functioning of Lagerstroemia speciosa L. under heavy roadside traffic: an approach to screen potential species for abatement of urban air pollution. 3 Biotech 7:1–10

    Google Scholar 

  • Singh H, Sharma R, Savita A, Singh MP, Kumar M, Verma A, Ansari MW, Sharma SK 2018 adaptive physiological response of Parthenium hysterophorus to elevated atmospheric CO2 concentration. Ind For 144:1–14

  • Stuhlfauth T, Fock HP (1990) Effects of whole season CO2 enrichment on the cultivation of a medicinal plant, Digitalis lanata. J Agron Crop Sci 164:168–173

    Article  CAS  Google Scholar 

  • Stuhlfauth T, Klug K, Fock HP (1987) The production of secondary metabolites by Digitalis lanata during CO2 enrichment and water stress. Phytochemistry 26:2735–2739

    Article  CAS  Google Scholar 

  • Stulen I, den Hertog J (1993) Root growth and functioning under atmospheric CO2 enrichment. Plant Ecol 104:99–115

    Article  Google Scholar 

  • Stutt GW, Eraso I, Rimando AM (2008) Carbon dioxide enrichment enhances growth and flavonoid content of two Scutellaria species. J Am Soc Hortic Sci 133:631–638

    Google Scholar 

  • Tan ZX, Liu S, Johnston CA, Loveland TR, Tieszen LL, Liu J, Kurtz R (2005) Soil organic carbon dynamics as related to land use history in the northwestern Great Plains. Global Biogeochem Cycles 19:GB3011. https://doi.org/10.1029/2005GB002536

    Article  CAS  Google Scholar 

  • Tan KY, Zhou GS, Ren SX (2013) Response of leaf dark respiration of winter wheat to changes in CO2 concentration and temperature. Chin Sci Bull 58:1795–1800

    Article  CAS  Google Scholar 

  • Taylor G, Ranasinghe S, Bosac C, Gardner SDL, Ferris R (1994) Elevated CO2 and plant growth: cellular mechanisms and responses of whole plants. J Exp Bot 45:1761–1774

    Article  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138:2097–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Lehman C (2001) Human-caused environmental change: impacts on plant diversity and evolution. Proc Natl Acad Sci USA 98:5433–5440

    Article  CAS  PubMed  Google Scholar 

  • Tisserat B (2002) Influence of ultra-high carbon dioxide levels on growth and morphogenesis of Lamiaceae species in soil. J Herbs Spices Med Plants 9:81–89

    Article  Google Scholar 

  • Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573

    Article  CAS  PubMed  Google Scholar 

  • Vurro E, Bruni R, Bianchi A, Sanità di Toppi L (2009) Elevated CO2 decreases oxidative stress and increases essential oil yield in leaves of Thymus vulgaris grown in a mini-FACE system. Environ Exper Bot 65:99–107

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    Article  CAS  Google Scholar 

  • Warrier RR, Jayaraj RS, Balu A (2013) Variation in gas exchange characteristics in clones of Eucalyptus сamaldulensis under varying conditions of CO2. J Stress Physiol Biochem 9:333–344

    Google Scholar 

  • Wu J, Hong J, Wang X, Sun J, Lu X, Fan J, Cai Y (2013) Biomass partitioning and its relationship with the environmental factors at the alpine steppe in northern Tibet. PLoS One 8:12

    Google Scholar 

  • Zari MP (2014) Ecosystem services analysis in response to biodiversity loss caused by the built environment. Surv Perspect Integr Environ Soc 7:1–14

    Google Scholar 

  • Ziska LR (2001) Changes in competitive ability between a C4 crop and a C3 weed with elevated carbon dioxide. Weed Sci 49:622–627

    Article  CAS  Google Scholar 

  • Ziska LR (2002) Influence of rising atmospheric CO2 since 1900 on early growth and photosynthetic response of a noxious invasive weed, Canada thistle (Cirsium arvense). Funt Plant Biol 29:1387–1392

    Article  Google Scholar 

  • Ziska LH, Panicker S, Wojno HL (2008) Recent and projected increases in atmospheric carbon dioxide and the potential impacts on growth and alkaloid production in wild poppy (Papaver setigerum DC). Clim Change 91:395–403

    Article  CAS  Google Scholar 

  • Zobayed SMA, Murch SJ, Rupasinghe HPV, Saxena PK (2003) Elevated carbon supply altered hypericin and hyperforin contents of St. John’s wort (Hypericum perforatum) grown in bioreactors. Plant Cell Tissue Organ Cult 75:143–149

    Article  CAS  Google Scholar 

  • Zou DH, Gao KS (2005) Regulation of gamete release in the economic brown seaweed Hizikia fusiformis (Phaeophyta). Biotechnol Lett 27:915–918

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the Director, Forest Research Institute, Dehradun for providing facility to carry out the proposed study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hukum Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Singh, H., Kaushik, M. et al. Adaptive physiological response, carbon partitioning, and biomass production of Withania somnifera (L.) Dunal grown under elevated CO2 regimes. 3 Biotech 8, 267 (2018). https://doi.org/10.1007/s13205-018-1292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1292-1

Keywords

Navigation