Skip to main content
Log in

Culture of Spirogyra sp. in a flat-panel airlift photobioreactor

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Spirogyra is a green filamentous freshwater algae on which recent studies reveal several promising properties and potential application possibilities in biotechnology. However, little is known about cultivation of Spirogyra and even less about large-scale cultivations in closed growth systems. Therefore, the aim of the present study was to elaborate the growth kinetics of Spirogyra sp. in a commercially available and scalable photobioreactor. For this purpose, Spirogyra sp. was grown indoors in distinct flat-panel airlift photobioreactors equipped with culture-flow directing installations. Hereby, special attention was laid on light administration and specific light availability and it was found that Spirogyra sp., in combination with the photobioreactor in question, required high photon-flux densities (100 µmol m−2 s−1 g −1DW ) for maximum proliferation which is in accordance with its abundance in epipelagial waters in nature. Applying photon-flux densities of up to 1400 µmol m−2 s−1, a maximum volumetric productivity and final biomass concentration of 1.15 gDW L−1 day−1 and 14.28 gDW L−1 were achieved, respectively, the highest to be reported for the alga. To the knowledge of the authors, this is the first report on the growth of Spirogyra in a flat-panel photobioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahalya N, Ramachandra TV, Kanamadi RD (2003) Biosorption of heavy metals. Res J Chem Environ 7(4):71–79

    CAS  Google Scholar 

  • Alshididi SS, Jawad A (2015) Antagonistic activity of Spirogyra micropunctata against some multidrug resistant human pathogenic bacteria. Iraqi J Sci 56(3C):2494–2498

    Google Scholar 

  • Bishnoi NR, Kumar R, Kumar S, Rani S (2007) Biosorption of Cr(III) from aqueous solution using algal biomass Spirogyra spp. J Hazard Mater 145(1–2):142–147

    Article  CAS  Google Scholar 

  • Bláha L, Babica P, Maršálek B (2009) Toxins produced in cyanobacterial water blooms—toxicity and risks. Interdiscip Toxicol 2(2):36–41

    Article  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Buri P (1978) On some edible aquatic flora and fauna of northern Thailand—their morphology, ecological distribution and their utilization. Natl Hist Bull Siam Soc 27:1–22

  • Cardillo G (2012) Five parameters logistic regression—there and back again. http://www.mathworks.com/matlabcentral/fileexchange/38043-five-parameters-logistic-regression-there-and-back-again/content/L5P.m. Accessed 8 Feb 2016

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Dash P, Tripathy NK, Padhi SB (2014) Novel antioxidant production by Cladophora sp. and Spirogyra sp. Med Sci 7(25):74–78

    Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330

    Article  CAS  Google Scholar 

  • Eshaq FS, Ali MN, Mohd MK (2010) Spirogyra biomass a renewable source for biofuel (bioethanol) production. Int J Eng Sci Technol 2:12

    Google Scholar 

  • Gallego I, Casas JJ, Fuentes-Rodríguez F, Juan M, Sánchez-Castillo P, Pérez-Martínez C (2013) Culture of Spirogyra africana from farm ponds for long-term experiments and stock maintenance. Biotechnol Agron Soc Environ 17(3):423–430

    Google Scholar 

  • Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J Appl Phycol 6(3):331–335

    Article  Google Scholar 

  • Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152(1):407–414

    Article  CAS  Google Scholar 

  • Gupta VK, Shrivastava AK, Jain N (2001) Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species. Water Res 35(17):4079–4085

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A, Saini VK, Jain N (2006) Biosorption of copper(II) from aqueous solutions by Spirogyra species. J Colloid Interface Sci 296(1):59–63

    Article  CAS  Google Scholar 

  • Han H, Chen Y, Jørgensen SE, Nielsen SN, Hu W (2009) A system-dynamic model on the competitive growth between Potamogeton malaianus Miq. and Spirogyra sp. Ecol Model 220(18):2206–2217

    Article  CAS  Google Scholar 

  • Hossain A, Salleh A, Boyce AN, Chowdhury P, Naqiuddin M (2008) Biodiesel fuel production from algae as renewable energy. Am J Biotechnol 4(3):250–254

  • Janssen M, Slenders P, Tramper J, Mur LR, Wijffels RH (2001) Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzyme Microb Technol 29(4–5):298–305

    Article  CAS  Google Scholar 

  • Khalaf MA (2008) Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp. Biores Technol 99(14):6631–6634

    Article  CAS  Google Scholar 

  • Kumar J, Dhar P, Tayade AB, Gupta D, Chaurasia OP, Upreti DK, Toppo K, Arora R, Suseela MR, Srivastava RB (2015) Chemical composition and biological activities of trans-Himalayan alga Spirogyra porticalis (Muell.) Cleve. PLoS One 10(2):e0118255

    Article  Google Scholar 

  • Lawton RJ, Nys RD, Paul NA (2013) Selecting reliable and robust freshwater macroalgae for biomass applications. PloS one 8(5):e64168

    Article  Google Scholar 

  • Linne von Berg K-H (2012) Der Kosmos-Algenführer. Süßwasseralgen unter dem Mikroskop; ein Bestimmungsbuch. Kosmos-Naturführer. Kosmos, Stuttgart

  • Maity JP, Bundschuh J, Chen C-Y, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment. Present and future perspectives—a mini review. Energy 78:104–113

    Article  CAS  Google Scholar 

  • Masojídek J, Torzillo G, Koblízek M (2013) Photosynthesis in microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. Applied phycology and biotechnology. Wiley-Blackwell, Chichester, pp 21–36

    Chapter  Google Scholar 

  • Mohamed ZA (2002) Allelopathic activity of Spirogyra sp.: stimulating bloom formation and toxin production by Oscillatroia agardhii in some irrigation canals, Egypt. J Plankton Res 24(2):137–141

    Article  CAS  Google Scholar 

  • Munir N, Imtiaz A, Sharif N, Naz S (2015) Optimization of growth conditions of different algal strains and determination of their lipid contents. J Anim Plant Sci 25(2):546–553

    Google Scholar 

  • Myers J (1976, c1953) Growth characteristics of algae in relation to the problems of mass culture. In: Burlew JS (ed) Algal culture. from laboratory to pilot plant. Publication 600. Carnegie Institution, Washington, pp 37–54

  • Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29(1):24–27

    Article  CAS  Google Scholar 

  • Ontawong A, Saowakon N, Vivithanaporn P, Pongchaidecha A, Lailerd N, Amornlerdpison D, Lungkaphin A, Srimaroeng C (2013) Antioxidant and renoprotective effects of Spirogyra neglecta (Hassall) Kützing extract in experimental type 2 diabetic rats. BioMed Res Int 2013:1–15. http://dx.doi.org/10.1155/2013/820786

  • Ortigueira J, Pinto T, Gouveia L, Moura P (2015) Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum. Energy 88:528–536

    Article  CAS  Google Scholar 

  • Özer A, Akkaya G, Turabik M (2006) The removal of Acid Red 274 from wastewater. Combined biosorption and biocoagulation with Spirogyra rhizopus. Dyes Pigments 71(2):83–89

    Article  Google Scholar 

  • Pacheco R, Ferreira AF, Pinto T, Nobre BP, Loureiro D, Moura P, Gouveia L, Silva CM (2015) The production of pigments & hydrogen through a Spirogyra sp. biorefinery. Energy Convers Manag 89:789–797

    Article  CAS  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial application of micro algae—a review. J Algal Biomass Util 3(4):89–100

    Google Scholar 

  • Ramaraj R, Unpaprom Y, Whangchai N, Dussadee N (2015) Culture of macroalgae Spirogyra ellipsospora for long-term experiments, stock maintenance and biogas production. Emergent Life Sci Res 1(1):38–45

    Google Scholar 

  • Rhee G-Y (1978) Effects of N: P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol Oceanogr 1:10–25

    Article  Google Scholar 

  • Richmond A (2013) Biological principles of mass cultivation of photoautrotrophic microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. Applied phycology and biotechnology Wiley-Blackwell, Chichester, pp 171–204

    Chapter  Google Scholar 

  • Romera E, Fraguela P, Ballester A, Blázquez ML, Muñoz JA, González F (2003) Biosorption equilibria with Spirogyra insignis. In: 15th international biohydrometallurgy symposium

  • Ronda SR, Alluri HK, Settalluri VS, Bondili JS, Suryanarayana V, Venkateshwar P (2007) Biosorption: an eco-friendly alternative for heavy metal removal. Afr J Biotechnol 6(25):2924–2931

    Article  Google Scholar 

  • Salim MA (2012) Biomass and lipid content of heterotrophic Spirogyra sp by using cassava starch hydrolysate. Int J Eng Res Dev 6(6):21–26

    Google Scholar 

  • Sastre RR (2012) Products from microalgae: an overview. In: Posten C, Walter C (eds) Microalgal biotechnology: integration and economy. Walter de Gruyter GmbH Co.KG, s.l., Berlin, pp 13–50

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43

    Article  Google Scholar 

  • Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T (2012) Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS One 7(6):e38975

    Article  CAS  Google Scholar 

  • Sorokin C, Krauss RW (1962) The effect of light intensity on the growth rates of green algae. Plant Physiol 37(1):37–42

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  Google Scholar 

  • Tamiya H, Hase E, Shibata K, Mituya A, Iwamura T, Nihei T, Sasa T (1953) Kinetics of growth of Chlorella, with special reference to its dependence on quantity of available light and on temperature. In: JS Burlew (ed) Algal culture. from laboratory to pilot plant. Publication 600. Carnegie Institution, Washington, pp 201–232

  • Thumvijit T, Inboot W, Peerapornpisal Y, Amornlerdpison D, Wongpoomchai R (2013a) The antimutagenic and antioxidant properties of Spirogyra neglecta (Hassall) Kützing. J Med Plants Res 7(34):2494–2500

    Google Scholar 

  • Thumvijit T, Thuschana W, Amornlerdpison D, Peerapornpisal Y, Wongpoomchai R (2013b) Evaluation of hepatic antioxidant capacities of Spirogyra neglecta (Hassall) Kützing in rats. Interdiscip Toxicol 6(3):152–156

    Article  Google Scholar 

  • Tipnee S, Ramaraj R, Unpaprom Y (2015) Nutritional evaluation of edible freshwater green macroalga Spirogyra varians. Emerg Life Sci Res 1(2):1–7

    Google Scholar 

  • Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57(2):187–197

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Chandrasekhar Rao N, Krishna Prasad K, Karthikeyan J (2002) Treatment of simulated Reactive Yellow 22 (Azo) dye effluents using Spirogyra species. Waste Manag 22(6):575–582

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Ramanaiah SV, Rajkumar B, Sarma PN (2007) Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra sp.-IO2: sorption mechanism elucidation. J Hazard Mater 141(3):465–474

    Article  CAS  Google Scholar 

  • Weber J, Schagerl M (2007) Strategies of Spirogyra against epiphytes. Algol Stud 123(1):57–72

    Article  Google Scholar 

  • Zarmi Y, Bel G, Aflalo C (2013) Theoretical analysis of culture growth in flat-panel bioreactors: the essential role of timescales. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. Applied phycology and biotechnology. Wiley-Blackwell, Chichester, pp 205–224

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bergmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, V., Bergmann, P. Culture of Spirogyra sp. in a flat-panel airlift photobioreactor. 3 Biotech 8, 6 (2018). https://doi.org/10.1007/s13205-017-1026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-1026-9

Keywords

Navigation