Skip to main content
Log in

Somatic embryogenesis in guava (Psidium guajava L.): current status and future perspectives

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Guava (Psidium guajava L.) is a highly perishable fruit crop comparable to mango owing to its high medicinal value and intense aroma. The presence of high genetic variability limits the chances of further expansion of guava improvement using biotechnological interventions. Conventional methods of guava improvement encountered with restricted achievement in progress of disease resistant varieties because of existing high genetic variability in the germplasm. There is a considerable demand for the establishment of successful and efficient regeneration protocols via somatic embryogenesis. Plants regenerated through somatic embryogenesis could be more useful than plants obtained through organogenesis because, in most cases, somatic embryos are of single-cell origin, and have a low frequency of chimeras and a high number of regenerations. This review is a snapshot of the recent status of somatic embryogenesis as a basis for expanding genetic improvement in guava for quality traits and future perspectives using advanced technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akhtar N (1997) Studies on induction of somatic embryogenesis and production of artificial seeds for micropropagation of a tropical fruit tree Guava, PhD Thesis. Banaras Hindu University, Varanasi

    Google Scholar 

  • Akhtar N (2010) Evaluation of the efficiency of somatic embryogenesis in guava (Psidium guajava L.). J Hortic Sci Biotechnol 85:556–562

    Article  Google Scholar 

  • Akhtar N (2013) Endogenous polyamines: a temporal cellular modulator of somatic embryogenesis in guava (Psidium guajava L.) cv. Allahabad safeda. Res Plant Sci 1:4–14

    Google Scholar 

  • Akhtar N, Kumari N, Pandey S, Ara H, Singh M, Jaiswal U, Jaiswal VS, Jain SM (2000) Somatic embryogenesis in tropical fruit trees. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol. 6. Kluwer, Dordrecht, pp 93–140

    Chapter  Google Scholar 

  • Ammirato PV (1993) Embryogenesis. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell cultures. Macmillan, New York, pp 82–123

    Google Scholar 

  • Arnold SV, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249

    Article  Google Scholar 

  • Bajpai A, Kamle M, Chandra R (2008) Direct somatic embryogenesis in Psidium guajava l. using malt extract based media. In: National seminar on sustainable horticulture research in India: perspective priorities and preparedness. B. B. Ambedkar University, 14–15 April, Vidya Vihar, Lucknow

  • Bajpai A, Chandra R, Mishra M, Tiwari RK (2007) Regenerating Psidium spp. for screening wilt resistant rootstock under in vitro conditions. Acta Hortic 535:145–154

    Article  Google Scholar 

  • Barbalho SM, Farinazzi-Machado FMV, de Alvares Goulart R, Brunnati ACS, Otoboni AM et al (2012) Psidium guajava (guava): a plant of multipurpose medicinal applications. Med Aromat Plants 1:104

    Google Scholar 

  • Bettini P, Michelotti S, Bindi D, Giannini R, Capuana M et al (2003) Pleiotropic effect of the insertion of the Agrobacterium rhizogenes rolDgene in tomato (Lycopersicon esculentum Mill.). Theor Appl Genet 7:831–836

    Article  Google Scholar 

  • Bhalla PL, Singh MB (2006) Molecular control of stem cell maintenance in shoot apical meristem. Plant Cell Rep 25:249–256

    Article  CAS  Google Scholar 

  • Biswas BK, Yadav A, Joshee N, Yadav AK (2005) In vitro plant regeneration and genetic transformation to enhance cold hardiness in guava: a nutraceutical fruit. Acta Hortic 735:31–32

    Google Scholar 

  • Biswas BK, Joshee N, Yadav A, and Yadav AK (2007) Development and application of Biotechnology in Guava: A Nutraceutical fruit. In: Proceedings of first international symposium on human health effects of fruits and vegetables. Acta Horticulturae, vol 744, pp 267–276

  • Bozhkov PV, Arnold SV (1998) Polyethylene glycol promotes maturation but inhibits further development of Picea abies somatic embryos. Physiol Plant 104:211–224

    Article  CAS  Google Scholar 

  • Buiatti M, Ingram DS (1991) Phytotoxins as a tool in breeding and selection of disease resistant plants. Experiment 47:811–819

    CAS  Google Scholar 

  • Bulgakov VP, Tchernoded GK, Mischenko NP, Shkryl YN, Glazunov VP, Fedoreyev SA, Zhuravlev YN (2003) Increase in anthraquinone content in Rubia cordifolia cells transformed by rol genes does not involve activation of the NADPH oxidase signaling pathway. Biochemistry 68(7):795–801

    CAS  Google Scholar 

  • Bulgakov VP, Shkryl YN, Veremeichik GN, Gorpenchenko TY, Vereshchagina YV (2013) Recent advances in the understanding of Agrobacterium rhizogenes derived genes and their Effects on stress resistance and plant metabolism. Adv Biochem Eng Biotechnol 134:1–22

    CAS  Google Scholar 

  • Busch W, Benfey PN (2010) Information processing without brains- the power of intercellular regulators in plants. Development 137:1215–1226

    Article  CAS  Google Scholar 

  • Canhoto JM, Lopes ML, Cruz GS (1999) Somatic embryogenesis in myrtaceous plants. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Kluwer, Dordrecht, pp 294–340

    Google Scholar 

  • Capuana M, Debergh PC (1997) Improvement of the maturation and germination of horse chestnut somatic embryos. Plant Cell Tissue Organ Cult 48:23–29

    Article  CAS  Google Scholar 

  • Chandra R, Bajpai A, Gupta S, Tiwari RK (2004) Embryogenesis and plant regeneration from mesocarp of Psidium guajava L. (guava). Indian J Biotechnol 3:246–248

    Google Scholar 

  • Chandra R, Mishra M, Abida M, Singh DB (2005) Paclobutrazol mediated somatic embryogenesis in guava. Acta Hortic 735:34–35

    Google Scholar 

  • Chandra R, Kamle M, Bajpai A (2010a) Guava. In: Singh HP, Parthasarthy VA, Babu N (eds) Advances in horticultural biotechnology, vol 1. Regeneration systems—perennial fruit crops plants and spices. Westville-Publishers, Delhi, pp 103–120

    Google Scholar 

  • Chandra R, Kamle M, Bajpai A, Muthukumar M, Kalim S (2010b) In vitro selection: a candidate approach for disease resistance breeding in fruit crops. Asian J Plant Sci 9:437–446

    Article  Google Scholar 

  • Debnath M, Malik CP, Bisen PS (2006) Micropropagation: a tool for the production of high quality plant-based medicines. Curr Pharm Biotechnol 7:33–34

    Article  CAS  Google Scholar 

  • Dinesh MR, Iyer CPA (2005) Significant research achievement in guava improvement and future needs. Acta Hortic 735:7–16

    Google Scholar 

  • Dunstan DI, Tautorus TE, Thorpe TA (1995) Somatic embryogenesis in woody plants. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 471–538

    Chapter  Google Scholar 

  • Edward JC, Shankar G (1964) Rootstock trial for guava (P. guajava L.). Allahabad Fmg 38:521–527

    Google Scholar 

  • Feher A (2005) Why somatic plant cells start to form embryos? In: Mujib A, Samaj J (eds) Somatic embryogenesis in plant cell monographs. Springer, Heidelberg, pp 85–101

    Google Scholar 

  • Feher A (2008) The initiation phase of somatic embryogenesis: what we know and what we don’t. Acta Biol Szeged 52:53–56

    Google Scholar 

  • Finkelstein RR, Crouch ML (1986) Rapeseed embryo development in culture on high osmoticum is similar to that in seeds. Plant Physiol 81:907–912

    Article  CAS  Google Scholar 

  • Gaffoor A, Alderson PG (1994) Somatic embryogenesis in guava (Psidium guajava L.). In: Lumsden PJ, Nicholas JR, Davies WJ (eds) Physiology, growth and development of plants in culture. Springer, Netherlands, pp 272–277

    Chapter  Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47

    Article  CAS  Google Scholar 

  • Gibson SI (2000) Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol 124:1532–1539

    Article  CAS  Google Scholar 

  • Gray DJ, McColley DW, Compton ME (1993) High frequency somatic embryogenesis from quiescent seed cotyledons of Cucumis melo cultivars. J Am Soc Hortic Sci 118:425–435

    Google Scholar 

  • Hammerschlag FA (1988) Selection of peach cells for insensitivity to culture filtrate of Xanthomonas campestris pv. Pruni and regeneration of resistant plants. Theor Appl Genet 76:865–869

    Article  CAS  Google Scholar 

  • Huang M, Kennedy JF, Li B, Xu X, Xie BJ (2007) Characters of rice starch gel modified by gellan, carrageenan and glucomannan: a texture profile analysis study. Carbohydr Polym 69:411–418

    Article  CAS  Google Scholar 

  • Jaiswal VS, Amin MN (1992) Guava and jackfruit. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops, Biotechnology in Agriculture. CABI, Wallingford, pp 421–431

    Google Scholar 

  • Jaiswal U, Jaiswal VS (2005) Psidium guajava. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI, Wallingford, pp 394–401

    Google Scholar 

  • Jayasankar S, Litz RE (1998) Characterization of resistance in mango embryogenic cultures selected for resistance to Colletotrichum gloeosporioides culture filtrate and phytotoxin. Theor Appl Genet 96:823–831

    Article  CAS  Google Scholar 

  • Jehan H, Courtois D, Ehret C, Lerch K, Petiard V (1994) Plant regeneration of Iris pallida Lam. and Iris germanica L. via somatic embryogenesis from leaves, apices and young flowers. Plant Cell Rep 13:671–675

    Article  CAS  Google Scholar 

  • Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  CAS  Google Scholar 

  • Kamle M, Bajpai A, Chandra R (2009) Putriscine enhances somatic embryogenesis in Psidium guajava L. cv. Allahabad Safeda. In: Proceedings of International Conference and Exhibition on Recent Advances in Environmental Protection, Agra, 224 p

  • Kamle M, Chandra R, Bajpai A and Kalim S (2010) Fortification of spermidine enhances somatic embryogenesis in Psidium guajava L. In: Proceedings of national conference on new horizons in plant sciences, Meerut, India, 132 p

  • Kamle M, Bajpai A, Chandra R, Kalim S, Kumar R (2011) Somatic embryogenesis for crop improvement. GERF Bull Biosci 2:54–59

    Google Scholar 

  • Kamle M, Kalim S, Bajpai A, Chandra R, Kumar R (2012) In vitro selection for wilt resistance in guava (Psidium guajava L.) cv. Allahabad safeda. Biotechnology 11:163–171

    Article  CAS  Google Scholar 

  • Kamle M, Kumar P, Bajpai A, Kalim S, Chandra R (2013) Assessment of genetic fidelity of in vitro regenerated guava (Psidium guajava L.) plants using DNA based markers. N Z J Crop Hortic Sci 42:1–9

    Article  Google Scholar 

  • Kamle M, Bajpai A, Kalim S, Chandra R (2016) Recurrent somatic embryogenesis and plantlet regeneration in Psidium guajava L. Braz Arch Bio Technol 59:e16150170

    Google Scholar 

  • Kermode AR (1990) Regulatory mechanisms involved in the transition from seed development to germination. CRC Crit Rev Plant Sci 81:280–288

    Google Scholar 

  • Kosiak B, Torp M, Skjerve E (2003) The prevalence and distribution of Fusarium species in Norwegian cereals: a survey. Acta Agric Scand Sect B Soil Plant Sci 53:168–176

    Google Scholar 

  • Kosky GR, Perozo JV, Penalver DA (2005) Somatic embryo germination of Psidium guajava L. In: Kosky GR, Perozo JV, Penalver DA (eds) The Rita® temporary immersion system and on semisolid medium. Springer, Heidelberg, pp 225–229

    Google Scholar 

  • Landi L, Capocasa F, Costantini E, Mezzetti B (2009) ROLC strawberry plant adaptability, productivity and tolerance to soil-borne disease and mycorrhizal interactions. Transgenic Res 18:933–942

    Article  CAS  Google Scholar 

  • Litz RE (1986) Effect of osmotic stress on somatic embryogenesis in Carica suspension cultures. J Am Soc Hortic Sci 111:969–972

    CAS  Google Scholar 

  • Litz RE, Gray DJ (1992) Organogenesis and somatic embryogenesis. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. CABI, Wallingford, pp 3–34

    Google Scholar 

  • Lou H, Kako S (1995) Role of high sugar concentrations in inducing somatic embryogenesis from cucumber cotyledons. Sci Hortic 64:11–20

    Article  CAS  Google Scholar 

  • Luo H, Obara-Okeyo P, Tamaki M, Kako S (1996) Influence of sucrose concentration on in vitro morphogenesis in cultured cucumber cotyledons explants. J Hortic Sci 71:497–502

    Article  Google Scholar 

  • Mathur AK, Mathur A (2003) Micropropagation of medicinal plants at the cross roads of some technological consideration for commercial exploitation. In: Chandra S, Mishra M (eds) Comprehensive micropropagation of horticultural crops. International Books Distribution Co, India, pp 386–426

    Google Scholar 

  • Matsumoto K, Barbosa ML, Souza LAC (1995) Race 1 Fusarium wilt tolerance on banana plants selected by fusaric acid. Euphytica 84:67–71

    Article  Google Scholar 

  • May RA, Trigiano RN (1991) Somatic embryogenesis and plant regeneration from leaves of Dendranthema grandiflora. J Am Soc Hortic Sci 116:366–371

    Google Scholar 

  • Merkle S (1995) For Strategies dealing with limitations of somatic embryogenesis in hardwood trees. Plant Tissue Cult Biotechnol 1:112–120

    Google Scholar 

  • Mishra M, Jalil U, Sharma N, Hudedamani U (2014) An Agrobacterium mediated transformation system of guava (Psidium guajava L.) with endochitinase gene. Crop Breed Appl Biotechnol 14:232–237

    Article  Google Scholar 

  • Moura EF, Motoike SY (2009) Induction of somatic embryogenesis in immature seeds of guava tree cv. Paluma. Rev Bras Frutic Jaboticabal 31:507–511

    Article  Google Scholar 

  • Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tissue Organ Cult 90:1–8

    Article  CAS  Google Scholar 

  • Prakash H, Tiwari JP (1993) Micropropagation of Guava (Psidium guajava). In: International conference on biotechnology in agriculture and forestry, New Delhi, pp 1–2

  • Prakash H, Tiwari JP (1996) In vitro clonal propagation of guava (Psidium guajava L.) cv. Sardar. In: National symposium on horticulture biotech. Indian Institute of Horticultural Research, Bangalore, pp 28–30

  • Quatrano RS (1987) The role of hormones during seed development. In: Davis PJ (ed) Plant hormones and their role in plant growth and development. Kluwer, Dordrecht, pp 494–514

    Chapter  Google Scholar 

  • Rai MK, Akhtar N, Jaiswal VS (2007) Somatic embryogenesis and plant regeneration in Psidium guajava L. cv. Banarasi local. Sci Hortic 113:129–133

    Article  CAS  Google Scholar 

  • Rai MK, Jaiswal VS, Jaiswal U (2008) Encapsulation of shoot tips of guava (Psidium guajava L.) for short-term storage and germplasm exchange. Sci Hortic 118:33–38

    Article  CAS  Google Scholar 

  • Rai MK, Jaiswal VS, Jaiswal U (2010) Regeneration of plantlets of guava (Psidium guajava L.) from somatic embryos developed under salt-stress condition. Acta Physiol Plant 32:1055–1062

    Article  Google Scholar 

  • Rai MK, Phulwaria M, Harish Gupta AK, Shekhawat NS, Jaiswal U (2012) Genetic homogeneity of guava plants derived from somatic embryogenesis using SSR and ISSR markers. Plant Cell Tissue Organ Cult 111:259–264

    Article  CAS  Google Scholar 

  • Raj-Bhansali R (1990) Somatic embryogenesis and regeneration of plantlets in pomegranate. Ann Bot 66:249–253

    Article  Google Scholar 

  • Ramirez V, Salazar YEG (1998) In vitro culture of guava (Psidium guajava L.) from immature embryos. Revista de la Facultade Agronomia Universidad Del Zulia 15:211–221

    Google Scholar 

  • Ribeiro IJA, Pommer CV (2004) Breeding guava (Psidium guajava L.) for resistance to rust caused by Puccinia psidii. Acta Hort 632:75–78

    Article  Google Scholar 

  • Sahay NS, Varma A (1999) Piriformospora indica: a new biological hardening tool for micropropagated plants. FEMS Microbiol Lett 181:297–302

    Article  CAS  Google Scholar 

  • Schmidt ED, Guzzo F, Toonen MA, De Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  Google Scholar 

  • Sengar AS, Thind S, Kumar B, Mittal P, Ghosal SS (2009) In vitro selection at cellular level for red rot resistance in sugarcane (Saccharum sp.). Plant Growth Regul 58:201–209

    Article  CAS  Google Scholar 

  • Sharma N, Kherwar D, Singh KM, Usha K (2013) Molecular breeding to improve guava (Psidium guajava L.): current status and future prospective. Sci Hortic 164:578–588

    Article  Google Scholar 

  • Sharp WR, Sondahl MR, Caldas LS, Maraffa SB (1980) The physiology of in vitro asexual embryogenesis. Hortic Rev 2:268–310

    CAS  Google Scholar 

  • Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb CJ (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270

    Article  CAS  Google Scholar 

  • Singh SK, Khawale RN, Singh R, Vimala Y (2005) Use of random amplified polymorphic DNA (RAPD) analysis to confirm genetic stability of in vitro regenerated grape plantlets. Indian J Hortic 62:12–15

    Google Scholar 

  • Stasolla C, Van-Zyl L, Egertsdotter U, Craig D, Liu W, Sederoff RR (2003) The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. Plant Physiol 131:49–60

    Article  CAS  Google Scholar 

  • Stone SL, Braybrook SA, Paula S, Kwon LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg B, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA 105:3151–3156

    Article  CAS  Google Scholar 

  • Thorpe TA, Harry IS, Kumar PP (1991) Application of micropropagation to forestry. In: Debergh P, Zimmerman RH (eds) Micropropagation. Kluwer Academic Publishers, Dordrecht, pp 311–336

    Chapter  Google Scholar 

  • Uhlig S, Jestoi M, Parikka P (2007) Fusarium avenaceum –the North European situation. Int J Food Microbiol 119:17–24

    Article  CAS  Google Scholar 

  • Utkhede RS (1986) In vitro screening of the world apple germplasm collection for resistance to Phytophthora cactorum crown rot. Sci Hortic 29:205–210

    Article  Google Scholar 

  • Valecillos C, Fermin G (2010) Cloning and sequencing of the hydroperoxide lyase (hpl) gene and genetic transformation in guava. Acta Hortic 849:245–250

    Article  CAS  Google Scholar 

  • Van den Bulk RW (1991) Application of cell and tissue culture and in vitro selection for disease resistance breeding—a review. Euphytica 65:269–285

    Article  Google Scholar 

  • Varma A, Schuepp H (1996) Influence of mycorrhization on growth of micropropagated plants. In: Mukherjee KG (ed) Concepts in mycorrhizal research. Kluwer Academic Publishers, London, pp 13–132

    Google Scholar 

  • Vilchez P, Albany V, Gomez-kosky R, Garcia L (2002) Induction of somatic embryogenesis in Psidium guajava L. starting at the zygotic embryo stage. Rev Fac Agro (LUZ) 19:284–293

    Google Scholar 

  • Von Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928

    Article  Google Scholar 

  • Vos JE, Schoeman MH, Berjak P, Watt MP, Toerien AJ (1998) In vitro selection and commercial release of guava wilt resistant rootstocks. Acta Hortic 513:69–80

    Article  Google Scholar 

  • West M, Yee KM, Danao JL, Zimmerman JL, Fischer RL, Goldberg RB, Harada JJ (1994) LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6:1731–1745

    Article  CAS  Google Scholar 

  • Xu N, Johns B, Pullman GS, Cairney J (1997) Rapid and reliable differential display from minute amounts of tissue: mass cloning and characterization of differentially expressed genes from loblolly pine embryos. Plant Mol Biol Rep 15:377–391

    Article  CAS  Google Scholar 

  • Yadava UL (1996) Guava (Psidium guajava L.): an exotic tree fruit with potential in the Southeastern United States. Hortic Sci 31:789–793

    Google Scholar 

  • Zhao J, Davis L, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  Google Scholar 

  • Zimmermann MH, Ziegler H (1975) List of sugars and sugar alcohols in sieve tube exudates. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of plant physiology. Springer, Berlin, pp 480–503

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the Systems and Synthetic Agro-biotech Center through the Next-Generation BioGreen 21 Program (PJ011117), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Hyun Baek.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamle, M., Baek, KH. Somatic embryogenesis in guava (Psidium guajava L.): current status and future perspectives. 3 Biotech 7, 203 (2017). https://doi.org/10.1007/s13205-017-0844-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0844-0

Keywords

Navigation