Skip to main content

Advertisement

Log in

Multifarious allelochemicals exhibiting antifungal activity from Bacillus subtilis MBCU5

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

A potential antagonist, designated strain Bacillus subtilis MBCU5 was previously isolated from vermicompost-amended soils of Gandhinagar, Gujarat, India. Crude allelochemicals from strain MBCU5 displayed strong antifungal activity against Macrophomina phaseolina as well as Rhizoctonia solani. These crude allelochemicals were tentatively identified as iturin, fengycin and surfactin through TLC and HPTLC analysis. Lipopeptides produced by MBCU5 were identified by MALDI-TOF–MS and LC–ESI–MS/MS analysis showed that iturin homologues (m/z 1020–1120), surfactin (m/z 1008.7 and m/z 1022.7), fengycin A and fengycin B (m/z 1400–1550) types of allelochemicals which are responsible for antifungal activity against pathogens. PCR analysis showed presence of genes (i.e. Iturin A synthetase KJ531680 and Surfactin synthetase KJ601726) involved in the biosynthesis of allelochemicals. Many reports showed lipopeptides from Bacillus species; this is the first report executed of multifarious allelochemicals from vermicompost-amended soil due to the presence of predominant Bacillus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Wahaibi Y, Joshi S, Al-Bahry S, Elshafie A, Al-Bemani A, Shibulal B (2014) Biosurfactant production by B.subtilis B30 and its application in enhancing oil recovery. Coll Surf B 1:324–333

    Article  Google Scholar 

  • Arrebola E, Jacobs R, Korsten L (2010) Iturin A is the principal inhibitor in the biocontrol activity of B. amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 2:386–395

    Article  Google Scholar 

  • Barazani O, Friedman J (2001) Allelopathic bacteria and their impact on higher plants. Critical Rev Microbiol 27:41–55

    Article  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  Google Scholar 

  • Calderia AT, Arteiro JMS, Coelho AV, Roseiro JC (2011) Combined use of LC-ESI-MS and antifungal tests for rapid identification of bioactive lipopeptides produced by Bacillus amyloliquefaciens CCMI 1051. Process Biochem 46:1738–1746

    Article  Google Scholar 

  • Cao Y, Xu Z, Ling N, Yuan Y, Yang X, Chen L, Shen B, Shen Q (2012) Isolation and characterization of lipopeptides produced by B.subtilisSQR9 for suppressing Fusarium wilt of cucumber. Sci Hortic 135:32–39

    Article  CAS  Google Scholar 

  • Dehghan-noudeh G, Housaindokht M, Bazzaz BS (2005) Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. J Microbiol 43:272–276

    Google Scholar 

  • Farooq M, Bajwa AA, Cheema SA, Cheema ZA (2001) Application of allelopathy in crop production. Int J Agri Biol 15:1367–1378

    Google Scholar 

  • Grangemard I, Wallach J, Maget-Dana R, Peypoux F (2001) Lichenysin a more efficient cation chelator than surfactin. Appl Biochem Biotechnol 90:199–210

    Article  CAS  Google Scholar 

  • Hue N, Serani L, Laprevote O (2001) Structural investigation of cyclic peptiolipids from B.subtilis by high-energy tandem mass spectrometry. Rapid Commun Mass Spectrom 15:203–209

    Article  CAS  Google Scholar 

  • Isogai A, Takayama S, Murakoshi S, Suzuki A (1982) Structure of β-amino acids in antibiotics Iturin A. Tetrahedron Lett 23:3065–3068

    Article  CAS  Google Scholar 

  • Kowall M, Vater J, Kluge T, Stein P, Ziessow D (1998) Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci 203:1–8

    Article  Google Scholar 

  • Krieg NR, Holt JG (1984) Bergy’s manual of determinative bacteriology, vol 1. The Williams and Wilkins Co, Baltimore

    Google Scholar 

  • Kumar A, Saini P, Shrivastava J (2009) Production of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis. Indian J Exp Biol 47:57–62

    Google Scholar 

  • Madonna AJ, Voorhees KJ, Taranenko NI, Laiko VV, Doroshenko VM (2003) Detection of cyclic lipopeptide biomarkers from Bacillus species using atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 75:1628–1637

    Article  CAS  Google Scholar 

  • Mnif I, Grau-Campistany A, Coronel-Leon J, Hammami I, Triki MA, Manresa A, Ghribi D (2016) Purification and identification of Bacillus subtilis SPB1 lipopeptides biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ Sci Pollut Res 23:6690–6699

    Article  CAS  Google Scholar 

  • Okigbo RN (2005) Biological control of postharvest fungal rot of yam (Dioscorea spp.) with Bacillus subtilis. Mycopathologia 159:307–314

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  Google Scholar 

  • Pandya U, Saraf U (2014) Isolation and identification of allelochemicals produced by B. sonorensis for suppression of charcoal rot of Arachis hypogaea L. J Basic Microbiol 54:1–10

    Article  CAS  Google Scholar 

  • Pandya U, Maheshwari D, Saraf M (2014) Assessment of ecological diversity of rhizobacterial communities in vermicompost and analysis of their potential to improve plant growth. Biologia 69:968–976

    Article  Google Scholar 

  • Pathak KV, Keharia H (2013) Characterization of fungal antagonistic bacilli isolated from aerial roots of banyan (Ficus benghalensis) using intact-cell MALDI-TOF mass spectrometry (ICMS). J Appl Microbiol 114:1300–1310

    Article  CAS  Google Scholar 

  • Pathak KV, Keharia H, Gupta K, Thakur SS, Balaram P (2012) Lipopeptides from banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins. J Am Soc Mass Spectrom 10:1716–1728

    Article  Google Scholar 

  • Pathak KV, Bose A, Keharia H (2014a) Identification and characterization of novel surfactins produced by fungal antagonist Bacillus amyloliquefaciens 6B. Biotechnol Appl Biochem 61(3):349–356

    CAS  Google Scholar 

  • Pathak KV, Bose A, Keharia H (2014b) Characterization of novel lipopeptides produced by Bacillus tequilensis P15 using liquid chromatography coupled electron spray ionization tandem mass spectrometry (LC–ESI–MS/MS). Int J Pept Res Ther 20(2):133–143

    Article  CAS  Google Scholar 

  • Romero D, Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers O, Paquot M, Garcia AP (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis towards Podosphaera fusca. Mol Plant Microbe Interact 118:323–327

    Google Scholar 

  • Sabareesh V, Balaram P (2006) Tandem electrospray mass spectrometric studies of proton and sodium ion adducts of neutral peptides with modified N-and C-termini: synthetic model peptides and microheterogeneous peptaibol antibiotics. Rapid Commun Mass Spectrom 20(4):618–628

    Article  CAS  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  CAS  Google Scholar 

  • Sinha RK, Heart S, Valani D, Chauhan K (2009) Vermiculture and sustainable agriculture. Am Eurasian J Agric Environ Sci 5:1–55

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Tilvi S, Naik CG (2007) Tandem mass spectrometry of Kahalaides: identification of new cyclic depsipeptides, kahlide R and S from Elysia grandifolia. J Mass Spectro 1:70–80

    Article  Google Scholar 

  • Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin- a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibio 39:888–901

    Article  CAS  Google Scholar 

  • Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorbtion ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219

    Article  CAS  Google Scholar 

  • Velho RV, Caldas DGG, Medina LFC, Tsai SM, Brandelli A (2011) Real time PCR investigation on the expression of sboA and itu D genes in Bacillus spp. Lett Appl Microbiol 52:660–666

    Article  CAS  Google Scholar 

  • Williams S, Brodbelt JS (2004) MSn characterization of protonated cyclic peptides and metal complexes. J Am Soc Mass Spectrom 15:1039–1054

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from Department of Science and Technology (DST), New Delhi, India under Women Scientist Scheme (WOS-A) (Grant No. SR/WOS-A/LS-186/2010) is gratefully acknowledged. The authors also thank to Dr. Khyati Pathak and Prof. H. B. Singh for their valuable guidance and expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Saraf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 91 kb)

Supplementary material 2 (DOCX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya, U., Prakash, S., Shende, K. et al. Multifarious allelochemicals exhibiting antifungal activity from Bacillus subtilis MBCU5. 3 Biotech 7, 175 (2017). https://doi.org/10.1007/s13205-017-0827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0827-1

Keywords

Navigation