Skip to main content

Advertisement

Log in

Recent advances of superparamagnetic iron oxide nanoparticles and its applications in neuroscience under external magnetic field

  • Review Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

With the development of science and technology, nanomaterials, especially superparamagnetic iron oxide nanoparticles (SPIONs), aroused great interests of researcher due to their special performance. SPIONs below 10 nm had good superparamagnetism, excellent magnetic field response which widely applied in biomedical field. Researchers had developed a variety of methods for synthesizing SPIONs. However, nanoscale magnetic materials tended to agglomerate and oxidized due to their high surface energy and high surface metal chemical activity; as a result, the magnetic properties and dispersibility of the SPIONs were reduced. Moreover, naked SPIONs possessed poor biocompatibility. Hence, it was necessary for surface modification of SPIONs in practical applications. In fact, SPIONs were usually surface coated by various materials to maintain their properties including non-polymeric organic stabilizers, polymeric stabilizers, and inorganic molecules. SPIONs had good dispersibility and biocompatibility after surface treatment. To date, SPIONs had been widely used in biomedical fields including magnetron therapy, magnetic hyperthermia, MRI, biological separation, and catalysis. Neurological conditions were the second leading cause of death globally, accounting for 9 million deaths per year. With increasing life stress, the increasing incidence of brain diseases imposes a severe economic burden on society and families. SPIONs owned excellent magnetism which responded superiorly to magnetic fields. In the presence of an external magnetic field, the magnetic nanoparticles are controlled by the magnetic field. More and more attention was fixed on SPIONs in nervous system. In review, recent advances of SPIONs and its applications in neuroscience under external magnetic field were included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  • Aboushoushah S, Alshammari W, Darwesh R, Elbaily N (2021) Toxicity and biodistribution assessment of curcumin-coated iron oxide nanoparticles: multidose administration. Life Sci 277:119625

    Article  CAS  Google Scholar 

  • Akilo OD, Choonara YE, Strydom AM, du Toit LC, Kumar P, Modi G, Pillay V (2016) AN in vitro evaluation of a carmustine-loaded nano-co-plex for potential magnetic-targeted intranasal delivery to the brain. Int J Pharm 500(1–2):196–209

    Article  CAS  Google Scholar 

  • Amstad E, Textor M, Reimhult E (2011) Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale 3(7):2819–2843

    Article  CAS  Google Scholar 

  • Antonelli A, Pacifico S, Sfara C, Tamma M, Magnani M (2018) Ferucarbotran-loaded red blood cells as long circulating MRI contrast agents: first in vivo results in mice. Nanomed (lond) 13(7):675–687

    Article  CAS  Google Scholar 

  • Aoki T, Saito M, Koseki H, Tsuji K, Tsuji A, Murata K, Kasuya H, Morita A, Narumiya S, Nozaki K, Invest MRMIS (2017) Macrophage imaging of cerebral aneurysms with ferumoxytol: an exploratory study in an animal model and in patients. J Stroke Cerebrovasc Dis 26(10):2055–2064

    Article  Google Scholar 

  • Arias LS, Pessan JP, Vieira APM, Lima TMT, Botazzo Delbem AC, Monteiro DR (2018a) iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (basel) 7:2

    Google Scholar 

  • Arias LS, Pessan JP, Vieira APM, Lima TMT, Delbem ACB, Monteiro DR (2018b) Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (basel) 7:2

    Google Scholar 

  • Askri D, Ouni S, Galai S, Chovelon B, Arnaud J, Lehmann SG, Sakly M, Sève M, Amara S (2018) Sub-acute intravenous exposure to Fe(2)O(3) nanoparticles does not alter cognitive performances and catecholamine levels, but slightly disrupts plasma iron level and brain iron content in rats. J Trace Elem Med Biol 50:73–79

    Article  CAS  Google Scholar 

  • Attia MA, Moussa SI, Sheha RR, Someda HH, Saad EA (2019) Hydroxyapatite/NiFe2O4 superparamagnetic composite: facile synthesis and adsorption of rare elements. Appl Radiat Isot 145:85–94

    Article  CAS  Google Scholar 

  • Auerbach M, Chertow GM, Rosner M (2018) Ferumoxytol for the treatment of iron deficiency anemia. Expert Rev Hematol 11(10):829–834

    Article  CAS  Google Scholar 

  • Badman RP, Moore SL, Killian JL, Feng T, Cleland TA, Hu F, Wang MD (2020) Dextran-coated iron oxide nanoparticle-induced nanotoxicity in neuron cultures. Sci Rep 10(1):11239

    Article  Google Scholar 

  • Biddlestone-Thorpe L, Marchi N, Guo K, Ghosh C, Janigro D, Valerie K, Yang H (2012) Nanomaterial-mediated CNS delivery of diagnostic and therapeutic agents. Adv Drug Deliv Rev 64(7):605–613

    Article  CAS  Google Scholar 

  • Bosco DB, Tian DS, Wu LJ (2020) Neuroimmune interaction in seizures and epilepsy: focusing on monocyte infiltration. FEBS J 287(22):4822–4837

    Article  CAS  Google Scholar 

  • Bulte JWM, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19(12):1141–1147

    Article  CAS  Google Scholar 

  • Calatayud MP, Soler E, Torres TE, Campos-Gonzalez E, Junquera C, Ibarra MR, Goya GF (2017) Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells. Sci Rep 7(1):8627

    Article  Google Scholar 

  • Calderón-Garcidueñas L, Gónzalez-Maciel A, Reynoso-Robles R, Delgado-Chávez R, Mukherjee PS, Kulesza RJ, Torres-Jardón R, Ávila-Ramírez J, Villarreal-Ríos R (2018) Hallmarks of Alzheimer disease are evolving relentlessly in metropolitan Mexico city infants, children and young adults. apoe4 carriers have higher suicide risk and higher odds of reaching nft stage v at ≤ 40 years of age. Environ Res 164:475–487

    Article  Google Scholar 

  • Carranza-Celis D, Cardona-Rodriguez A, Narvaez J, Moscoso-Londonoz O, Muraca D, Knobel M, Ornelas-Soto N, Reiber A, Gabriel Ramirez J (2019) Control of multiferroic properties in bifeo3 nanoparticles. Sci Rep 9:1

    Article  CAS  Google Scholar 

  • Carro CE, Pilozzi AR, Huang X (2019) Nanoneurotoxicity and potential nanotheranostics for Alzheimer’s disease. EC Pharmacol Toxicol 7(12):1–7

    Google Scholar 

  • Cassandra TP, Reisert H, Adesman A (2021) Wandering behavior in children with autism spectrum disorder and other developmental disabilities. Curr Opin Pediatr 33(4):464–470

    Article  Google Scholar 

  • Chalouhi N, Jabbour P, Magnotta V, Hasan D (2013) The emerging role of ferumoxytol-enhanced MRI in the management of cerebrovascular lesions. Molecules 18(8):9670–9683

    Article  CAS  Google Scholar 

  • Champagne PO, Dang N, Carmant L, Bouthillier A, Sanon NT, Sawan M (2016) Behavior of superparamagnetic nanoparticles in regard of brain activity: a proof of concept. Annu Int Conf IEEE Eng Med Biol Soc 2016:4216–4219

    Google Scholar 

  • Champagne P-O, Sanon NT, Carmant L, Nguyen DK, Deschênes S, Pouliot P, Bouthillier A, Sawan M (2022) Superparamagnetic iron oxide nanoparticles-based detection of neuronal activity. Nanomed Nanotechnol Biol Med 40:102478

    Article  CAS  Google Scholar 

  • Chaudhuri S, Bhobe PA, Bhattacharya A, Nigam AK (2018) Unraveling the physical properties and superparamagnetism in anti-site disorder controlled Fe2TiSn. J Phys Condens Matter 31:045801

    Article  Google Scholar 

  • Christen T, Ni W, Qiu D, Schmiedeskamp H, Bammer R, Moseley M, Zaharchuk G (2013) High-resolution cerebral blood volume imaging in humans using the blood pool contrast agent ferumoxytol. Magn Reson Med 70(3):705–710

    Article  CAS  Google Scholar 

  • Cooley CZ, Mandeville JB, Mason EE, Mandeville ET, Wald LL (2018) Rodent cerebral blood volume (cbv) changes during hypercapnia observed using magnetic particle imaging (MPI) detection. Neuroimage 178:713–720

    Article  Google Scholar 

  • Dai X, Yao J, Zhong Y, Li Y, Lu Q, Zhang Y, Tian X, Guo Z, Bai T (2019) Preparation and characterization of fe(3)o(4)@mtx magnetic nanoparticles for thermochemotherapy of primary central nervous system lymphoma in vitro and in vivo. Int J Nanomed 14:9647–9663

    Article  CAS  Google Scholar 

  • Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7(1):a020412

    Article  Google Scholar 

  • Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98(5):335–344

    Article  CAS  Google Scholar 

  • Duan X, Chan C, Lin W (2019) Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew Chem Int Ed Engl 58(3):670–680

    Article  CAS  Google Scholar 

  • Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C (2016) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10(2):2436–2446

    Article  CAS  Google Scholar 

  • Fan K, Wang H, Xi J, Liu Q, Meng X, Duan D, Gao L, Yan X (2016) Optimization of Fe(3)O(4) nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem Commun (camb) 53(2):424–427

    Article  Google Scholar 

  • Fang Z, Chen L, Moser MAJ, Zhang W, Qin Z, Zhang B (2021) Electroporation-based therapy for brain tumors: a review. J Biomech Eng 143:10

    Article  Google Scholar 

  • Fernández T, Martínez-Serrano A, Cussó L, Desco M, Ramos-Gómez M (2018) Functionalization and characterization of magnetic nanoparticles for the detection of ferritin accumulation in Alzheimer’s disease. ACS Chem Neurosci 9(5):912–924

    Article  Google Scholar 

  • Fernández-Bertólez N, Costa C, Brandão F, Kiliç G, Teixeira JP, Pásaro E, Laffon B, Valdiglesias V (2018) Neurotoxicity assessment of oleic acid-coated iron oxide nanoparticles in SH-SY5Y cells. Toxicology 406–407:81–91

    Article  Google Scholar 

  • Ficiarà E, Ansari SA, Argenziano M, Cangemi L, Monge C, Cavalli R, D’Agata F (2020) Beyond oncological hyperthermia: physically drivable magnetic nanobubbles as novel multipurpose theranostic carriers in the central nervous system. Molecules 25(9):2104

    Article  Google Scholar 

  • Finn JP, Nguyen KL, Han F, Zhou Z, Salusky I, Ayad I, Hu P (2016) Cardiovascular MRI with ferumoxytol. Clin Radiol 71(8):796–806

    Article  CAS  Google Scholar 

  • Fu T, Kong Q, Sheng H, Gao L (2016) Value of functionalized superparamagnetic iron oxide nanoparticles in the diagnosis and treatment of acute temporal lobe epilepsy on MRI. Neural Plast 2016:2412958

    Article  Google Scholar 

  • Gaharwar US, Meena R, Rajamani P (2017) Iron oxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in lymphocytes. J Appl Toxicol 37(10):1232–1244

    Article  CAS  Google Scholar 

  • Gao J, Xia B, Li S, Huang L, Ma T, Shi X, Luo K, Yang Y, Zhao L, Zhang H, Luo B, Huang J (2020) Magnetic field promotes migration of schwann cells with chondroitinase abc (chabc)-loaded superparamagnetic nanoparticles across astrocyte boundary in vitro. Int J Nanomed 15:315–332

    Article  CAS  Google Scholar 

  • Gharagouzloo CA, Timms L, Qiao J, Fang Z, Nneji J, Pandya A, Kulkarni P, van de Ven AL, Ferris C, Sridhar S (2017) Quantitative vascular neuroimaging of the rat brain using superparamagnetic nanoparticles: new insights on vascular organization and brain function. Neuroimage 163:24–33

    Article  Google Scholar 

  • Giannousi K, Antonoglou O, Dendrinou-Samara C (2019) Interplay between amyloid fibrillation delay and degradation by magnetic zinc-doped ferrite nanoparticles. ACS Chem Neurosci 10(8):3796–3804

    Article  CAS  Google Scholar 

  • Gneveckow U, Jordan A, Scholz R, Brüss V, Waldöfner N, Ricke J, Feussner A, Hildebrandt B, Rau B, Wust P (2004) Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. Med Phys 31(6):1444–1451

    Article  Google Scholar 

  • Goulding SR, Anantha J, Collins LM, Sullivan AM, O’Keeffe GW (2022) Growth differentiation factor 5: a neurotrophic factor with neuroprotective potential in Parkinson’s disease. Neural Regen Res 17(1):38–44

    Article  CAS  Google Scholar 

  • Grillone A, Battaglini M, Moscato S, Mattii L, de Julián Fernández C, Scarpellini A, Giorgi M, Sinibaldi E, Ciofani G (2019) Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment. Nanomed (lond) 14(6):727–752

    Article  Google Scholar 

  • Hadjikhani A, Rodzinski A, Wang P, Nagesetti A, Guduru R, Liang P, Runowicz C, Shahbazmohamadi S, Khizroev S (2017) Biodistribution and clearance of magnetoelectric nanoparticles for nanomedical applications using energy dispersive spectroscopy. Nanomed (lond) 12(15):1801–1822

    Article  CAS  Google Scholar 

  • Hamley IW (2003) Nanotechnology with soft materials. Angew Chem-Int Ed 42(15):1692–1712

    Article  CAS  Google Scholar 

  • Hasany SF, Abdurahman NH, Sunarti AR, Jose R (2013) Magnetic iron oxide nanoparticles: chemical synthesis and applications review. Curr Nanosci 9(5):561–575

    Article  CAS  Google Scholar 

  • Hermenegildo B, Ribeiro C, Pérez-Álvarez L, Vilas JL, Learmonth DA, Sousa RA, Martins P, Lanceros-Méndez S (2019) Hydrogel-based magnetoelectric microenvironments for tissue stimulation. Colloids Surf B Biointerfaces 181:1041–1047

    Article  CAS  Google Scholar 

  • Hong W, He Q, Fan S, Carl M, Shao H, Chen J, Chang EY, Du J (2017) Imaging and quantification of iron-oxide nanoparticles (IONP) using MP-RAGE and UTE based sequences. Magn Reson Med 78(1):226–232

    Article  CAS  Google Scholar 

  • Hu Y, Li Z, Shi W, Yin Y, Mei H, Wang H, Guo T, Deng J, Yan H, Lu X (2019) Early diagnosis of cerebral thrombosis by EGFP-EGF1 protein conjugated ferroferric oxide magnetic nanoparticles. J Biomater Appl 33(9):1195–1201

    Article  CAS  Google Scholar 

  • Hudson JS, Chung TK, Prout BS, Nagahama Y, Raghavan ML, Hasan DM (2019) Iron nanoparticle contrast enhanced microwave imaging for emergent stroke: a pilot study. J Clin Neurosci 59:284–290

    Article  CAS  Google Scholar 

  • Huilgol NG, Gupta S, Dixit R (2010) Chemoradiation with hyperthermia in the treatment of head and neck cancer. Int J Hyperthermia 26(1):21–25

    Article  CAS  Google Scholar 

  • Iannone MF, Groppa MD, Zawoznik MS, Coral DF, Fernández van Raap MB, Benavides MP (2021) Magnetite nanoparticles coated with citric acid are not phytotoxic and stimulate soybean and alfalfa growth. Ecotoxicol Environ Saf 211:111942

    Article  CAS  Google Scholar 

  • Iv M, Telischak N, Feng D, Holdsworth SJ, Yeom KW, Daldrup-Link HE (2015) Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomed (lond) 10(6):993–1018

    Article  CAS  Google Scholar 

  • Kandasamy G, Maity D (2015) Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 496(2):191–218

    Article  CAS  Google Scholar 

  • Kang MK, Kim TJ, Kim YJ, Kang L, Kim J, Lee N, Hyeon T, Lim MS, Mo HJ, Shin JH, Ko SB, Yoon BW (2020) Targeted delivery of iron oxide nanoparticle-loaded human embryonic stem cell-derived spherical neural masses for treating intracerebral hemorrhage. Int J Mol Sci 21(10):3658

    Article  CAS  Google Scholar 

  • Khan S, Amin FM, Fliedner FP, Christensen CE, Tolnai D, Younis S, Olinger ACR, Birgens H, Daldrup-Link H, Kjær A, Larsson HBW, Lindberg U, Ashina M (2019) Investigating macrophage-mediated inflammation in migraine using ultrasmall superparamagnetic iron oxide-enhanced 3T magnetic resonance imaging. Cephalalgia 39(11):1407–1420

    Article  Google Scholar 

  • Kim Y, Roh Y (2015) Microbial synthesis and characterization of superparamagnetic zn-substituted magnetite nanoparticles. J Nanosci Nanotechnol 15(8):6129–6132

    Article  CAS  Google Scholar 

  • Kim J, Kim E, Euceda LR, Meyer DE, Langseth K, Bathen TF, Moestue SA, Huuse EM (2018) Multiparametric characterization of response to anti-angiogenic therapy using USPIO contrast-enhanced MRI in combination with dynamic contrast-enhanced MRI. J Magn Reson Imaging 47(6):1589–1600

    Article  Google Scholar 

  • Kleist I, Noahsen P, Gredal O, Riis J, Andersen S (2021) Diagnosing dementia in the Arctic: translating tools and developing and validating an algorithm for assessment of impaired cognitive function in Greenland Inuit. Int J Circumpolar Health 80(1):1948247

    Article  Google Scholar 

  • Kowalczyk M, Banach M, Rysz J (2011) Ferumoxytol: a new era of iron deficiency anemia treatment for patients with chronic kidney disease. J Nephrol 24(6):717–722

    Article  CAS  Google Scholar 

  • Krans NA, van Uunen DL, Versluis C, Dugulan AI, Chai J, Hofmann JP, Hensen EJM, Zečević J, de Jong KP (2020) Stability of colloidal iron oxide nanoparticles on titania and silica support. Chem Mater 32(12):5226–5235

    Article  CAS  Google Scholar 

  • Lamer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72(11):4847–4854

    Article  CAS  Google Scholar 

  • Laurent S, Bridot J-L, Elst LV, Muller RN (2010) Magnetic iron oxide nanoparticles for biomedical applications. Future Med Chem 2(3):427–449

    Article  CAS  Google Scholar 

  • Lee NK, Kim HS, Yoo D, Hwang JW, Choi SJ, Oh W, Chang JW, Na DL (2017) Magnetic resonance imaging of ferumoxytol-labeled human mesenchymal stem cells in the mouse brain. Stem Cell Rev Rep 13(1):127–138

    Article  CAS  Google Scholar 

  • Lee C, Kim GR, Yoon J, Kim SE, Yoo JS, Piao Y (2018) In vivo delineation of glioblastoma by targeting tumor-associated macrophages with near-infrared fluorescent silica coated iron oxide nanoparticles in orthotopic xenografts for surgical guidance. Sci Rep 8(1):11122

    Article  Google Scholar 

  • Lehrman ED, Plotnik AN, Hope T, Saloner D (2019) Ferumoxytol-enhanced MRI in the peripheral vasculature. Clin Radiol 74(1):37–50

    Article  CAS  Google Scholar 

  • Li R, Wang J, Yu X, Xu P, Zhang S, Xu J, Bai Y, Dai Z, Sun Y, Ye R, Liu X, Ruan G, Xu G (2019) Enhancing the effects of transcranial magnetic stimulation with intravenously injected magnetic nanoparticles. Biomater Sci 7(6):2297–2307

    Article  CAS  Google Scholar 

  • Liang J, Tang BZ, Liu B (2015) Specific light-up bioprobes based on AIEgen conjugates. Chem Soc Rev 44(10):2798–2811

    Article  CAS  Google Scholar 

  • Lin XL, Zhao SH, Zhang L, Hu GQ, Sun ZW, Yang WS (2012) Dose-dependent cytotoxicity and oxidative stress induced by “naked” fe3o4 nanoparticles in human hepatocyte. Chem Res Chin Univ 28(1):114–118

    CAS  Google Scholar 

  • Liu DZ, Cheng Y, Cai RQ, Wang Bd WW, Cui H, Liu M, Zhang BL, Mei QB, Zhou SY (2018) The enhancement of siPLK1 penetration across BBB and its anti glioblastoma activity in vivo by magnet and transferrin co-modified nanoparticle. Nanomedicine 14(3):991–1003

    Article  CAS  Google Scholar 

  • Liu XG, Zhang L, Lu S, Liu DQ, Huang YR, Zhu J, Zhou WW, Yu XL, Liu RT (2020a) Superparamagnetic iron oxide nanoparticles conjugated with Aβ oligomer-specific scFv antibody and class A scavenger receptor activator show therapeutic potentials for Alzheimer’s Disease. J Nanobiotechnol 18(1):160

    Article  CAS  Google Scholar 

  • Liu XG, Zhang L, Lu S, Liu DQ, Zhang LX, Yu XL, Liu RT (2020b) Multifunctional superparamagnetic iron oxide nanoparticles conjugated with aβ oligomer-specific scfv antibody and class a scavenger receptor activator show early diagnostic potentials for Alzheimer’s disease. Int J Nanomed 15:4919–4932

    Article  CAS  Google Scholar 

  • Lu QB, Sun JF, Yang QY, Cai WW, Xia MQ, Wu FF, Gu N, Zhang ZJ (2020) Magnetic brain stimulation using iron oxide nanoparticle-mediated selective treatment of the left prelimbic cortex as a novel strategy to rapidly improve depressive-like symptoms in mice. Zool Res 41(4):381–394

    Article  CAS  Google Scholar 

  • Ma DJ, Lim MS, Park UC, Park JB, Ji SY, Yu HG (2019) Magnetic iron oxide nanoparticle labeling of photoreceptor precursors for magnetic resonance imaging. Tissue Eng Part C Methods 25(9):532–542

    Article  CAS  Google Scholar 

  • Maher BA, Ahmed IA, Karloukovski V, MacLaren DA, Foulds PG, Allsop D, Mann DM, Torres-Jardón R, Calderon-Garciduenas L (2016) Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci USA 113(39):10797–10801

    Article  CAS  Google Scholar 

  • Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103(2):317–324

    Article  Google Scholar 

  • Malhotra N, Audira G, Chen JR, Siregar P, Hsu HS, Lee JS, Ger TR, Hsiao CD (2020) Surface modification of magnetic nanoparticles by carbon-coating can increase its biosafety: evidences from biochemical and neurobehavioral tests in zebrafish. Molecules 25(9):2256

    Article  CAS  Google Scholar 

  • Mårtensson U, Cederlund M, Jenholt Nolbris M, Mellgren K, Wijk H, Nilsson S (2021) Experiences before and after nasogastric and gastrostomy tube insertion with emphasis on mealtimes: a case study of an adolescent with cerebral palsy. Int J Qual Stud Health Well-Being 16(1):1942415

    Article  Google Scholar 

  • Millward JM, Ariza de Schellenberger A, Berndt D, Hanke-Vela L, Schellenberger E, Waiczies S, Taupitz M, Kobayashi Y, Wagner S, Infante-Duarte C (2019) Application of europium-doped very small iron oxide nanoparticles to visualize neuroinflammation with mri and fluorescence microscopy. Neuroscience 403:136–144

    Article  CAS  Google Scholar 

  • Mohanty S, Jain KG, Nandy SB, Kakkar A, Kumar M, Dinda AK, Singh H, Ray A (2018) Iron oxide labeling does not affect differentiation potential of human bone marrow mesenchymal stem cells exhibited by their differentiation into cardiac and neuronal cells. Mol Cell Biochem 448(1–2):17–26

    Article  CAS  Google Scholar 

  • Mou X, Ali Z, Li S, He N (2015) Applications of magnetic nanoparticles in targeted drug delivery system. J Nanosci Nanotechnol 15(1):54–62

    Article  CAS  Google Scholar 

  • Muthiah M, Park I-K, Cho C-S (2013) Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv 31(8):1224–1236

    Article  CAS  Google Scholar 

  • Najafypour A, Mahdavian AR, Fassihi A, Aliabadi HS (2020) Alternating magnetic field and ultrasound waves as size controlling parameters in preparation of superparamagnetic fe3O4 nanoparticles. J Nanosci Nanotechnol 20(2):871–877

    Article  CAS  Google Scholar 

  • Ovejero JG, Mayoral A, Canete M, Garcia M, Hernando A, Herrasti P (2019) Electrochemical synthesis and magnetic properties of mfe2o4 (m = fe, mn, co, ni) nanoparticles for potential biomedical applications. J Nanosci Nanotechnol 19(4):2008–2015

    Article  CAS  Google Scholar 

  • Palzer J, Mues B, Goerg R, Aberle M, Rensen SS, Olde Damink SWM, Vaes RDW, Cramer T, Schmitz-Rode T, Neumann UP, Slabu I, Roeth AA (2021) Magnetic fluid hyperthermia as treatment option for pancreatic cancer cells and pancreatic cancer organoids. Int J Nanomed 16:2965–2981

    Article  Google Scholar 

  • Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14

    Article  Google Scholar 

  • Pardridge WM (2022) A historical review of brain drug delivery. Pharmaceutics 14(6):1283

    Article  CAS  Google Scholar 

  • Pedram MZ, Shamloo A, Alasty A, Ghafar-Zadeh E (2016) Optimal magnetic field for crossing super-para-magnetic nanoparticles through the brain blood barrier: a computational approach. Biosens (basel) 6(2):25

    Article  Google Scholar 

  • Poka LP, Mohan KG, Rao VK, Shanker K (2019) Biosynthesis, characterization and acute oral toxicity studies of synthesized iron oxide nanoparticles using ethanolic extract of Centella asiatica plant. Mater Lett 236:256–259

    Article  Google Scholar 

  • Pongrac IM, Radmilović MD, Ahmed LB, Mlinarić H, Regul J, Škokić S, Babič M, Horák D, Hoehn M, Gajović S (2019) D-mannose-coating of maghemite nanoparticles improved labeling of neural stem cells and allowed their visualization by ex vivo mri after transplantation in the mouse brain. Cell Transplant 28(5):553–567

    Article  Google Scholar 

  • Popielarski SR, Hu-Lieskovan S, French SW, Triche TJ, Davis ME (2005) A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver. 2. in vitro and in vivo uptake results. Bioconjug Chem 16(5):1071–1080

    Article  CAS  Google Scholar 

  • Rao S, Chen R, LaRocca AA, Christiansen MG, Senko AW, Shi CH, Chiang PH, Varnavides G, Xue J, Zhou Y, Park S, Ding R, Moon J, Feng G, Anikeeva P (2019) Remotely controlled chemomagnetic modulation of targeted neural circuits. Nat Nanotechnol 14(10):967–973

    Article  CAS  Google Scholar 

  • Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today (kidlington) 19(3):157–168

    Article  CAS  Google Scholar 

  • Roldan Cuenya B (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12):3127–3150

    Article  Google Scholar 

  • Ryvolova M, Chomoucka J, Drbohlavova J, Kopel P, Babula P, Hynek D, Adam V, Eckschlager T, Hubalek J, Stiborova M, Kaiser J, Kizek R (2012) Modern micro and nanoparticle-based imaging techniques. Sensors 12(11):14792–14820

    Article  Google Scholar 

  • Sanati M, Aminyavari S, Khodagholi F, Hajipour MJ, Sadeghi P, Noruzi M, Moshtagh A, Behmadi H, Sharifzadeh M (2021) PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) ameliorate learning and memory deficit in a rat model of Alzheimer’s disease: potential participation of STIMs. Neurotoxicology 85:145–159

    Article  CAS  Google Scholar 

  • Shah P, Dubey P, Vyas B, Kaul A, Mishra AK, Chopra D, Patel P (2021) Lamotrigine loaded PLGA nanoparticles intended for direct nose to brain delivery in epilepsy: pharmacokinetic, pharmacodynamic and scintigraphy study. Artif Cells Nanomed Biotechnol 49(1):511–522

    Article  CAS  Google Scholar 

  • Shen WB, Anastasiadis P, Nguyen B, Yarnell D, Yarowsky PJ, Frenkel V, Fishman PS (2017) Magnetic enhancement of stem cell-targeted delivery into the brain following MR-guided focused ultrasound for opening the blood-brain barrier. Cell Transplant 26(7):1235–1246

    Article  Google Scholar 

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17(1):20–37

    Article  CAS  Google Scholar 

  • Shi D, Mi G, Shen Y, Webster TJ (2019) Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood-brain barrier. Nanoscale 11(32):15057–15071

    Article  CAS  Google Scholar 

  • Simorgh S, Bagher Z, Farhadi M, Kamrava SK, Boroujeni ME, Namjoo Z, Hour FQ, Moradi S, Alizadeh R (2021) Magnetic targeting of human olfactory mucosa stem cells following intranasal administration: a novel approach to Parkinson’s disease treatment. Mol Neurobiol 58(8):3835–3847

    Article  CAS  Google Scholar 

  • Singh N, Jenkins GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358

    Article  Google Scholar 

  • Singh P, Gupta BK, Prasad NK, Yadav PK, Upadhyay C (2018) Novel facets of multifunctional Ag@Fe3O4 core-shell nanoparticles for multimodal imaging applications. J Appl Phys 124(7):07401

    Article  Google Scholar 

  • Stewart TS, Nagesetti A, Guduru R, Liang P, Stimphil E, Hadjikhani A, Salgueiro L, Horstmyer J, Cai R, Schally A, Khizroev S (2018) Magnetoelectric nanoparticles for delivery of antitumor peptides into glioblastoma cells by magnetic fields. Nanomed (lond) 13(4):423–438

    Article  CAS  Google Scholar 

  • Sudame A, Kandasamy G, Maity D (2019) Single and dual surfactants coated hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia applications. J Nanosci Nanotechnol 19(7):3991–3999

    Article  CAS  Google Scholar 

  • Suriyanto E, Ng Y, Kumar SD (2017) Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. Biomed Eng Online 16(1):36

    Article  CAS  Google Scholar 

  • Tafoya MA, Madi S, Sillerud LO (2017) Superparamagnetic nanoparticle-enhanced MRI of Alzheimer’s disease plaques and activated microglia in 3X transgenic mouse brains: contrast optimization. J Magn Reson Imaging 46(2):574–588

    Article  Google Scholar 

  • Tan J, Sun W, Lu L, Xiao Z, Wei H, Shi W, Wang Y, Han S, Shuai X (2019) I6P7 peptide modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging detection of low-grade brain gliomas. J Mater Chem B 7(40):6139–6147

    Article  CAS  Google Scholar 

  • Tapeinos C, Marino A, Battaglini M, Migliorin S, Brescia R, Scarpellini A, De Julián Fernández C, Prato M, Drago F, Ciofani G (2018) Stimuli-responsive lipid-based magnetic nanovectors increase apoptosis in glioblastoma cells through synergic intracellular hyperthermia and chemotherapy. Nanoscale 11(1):72–88

    Article  Google Scholar 

  • Truong NP, Whittaker MR, Mak CW, Davis TP (2015) The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv 12(1):129–142

    Article  CAS  Google Scholar 

  • Vadhan-Raj S, Strauss W, Ford D, Bernard K, Boccia R, Li J, Allen LF (2014) Efficacy and safety of IV ferumoxytol for adults with iron deficiency anemia previously unresponsive to or unable to tolerate oral iron. Am J Hematol 89(1):7–12

    Article  CAS  Google Scholar 

  • Vallabani NVS, Singh S (2018) Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 8(6):279

    Article  Google Scholar 

  • Vasudevan P, Suri M (2017) A clinical approach to developmental delay and intellectual disability. Clin Med (lond) 17(6):558–561

    Article  Google Scholar 

  • Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS (2007) Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 4:2

    Article  Google Scholar 

  • Vishnu D, Dhandapani B (2020) Integration of cynodon dactylon and muraya koenigii plant extracts in amino-functionalised silica-coated magnetic nanoparticle as an effective sorbent for the removal of chromium(vi) metal pollutants. IET Nanobiotechnol 14(6):449–456

    Article  Google Scholar 

  • Wahajuddin, Arora S (2012a) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed 7:3445–3471

    Article  CAS  Google Scholar 

  • Wahajuddin, Arora S (2012b) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed 7:3445–3471

    Article  CAS  Google Scholar 

  • Wang Y, Li B, Xu H, Du S, Liu T, Ren J, Zhang J, Zhang H, Liu Y, Lu L (2020) Growth and elongation of axons through mechanical tension mediated by fluorescent-magnetic bifunctional Fe(3)O(4)·Rhodamine 6G@PDA superparticles. J Nanobiotechnol 18(1):64

    Article  CAS  Google Scholar 

  • Wang Y, Jiang J, Fu X, Zhang J, Song J, Wang Y, Duan L, Shao P, Xu X, Zeng L, Zhang F (2022) Fe(3)O(4)@polydopamine nanoparticle-loaded human umbilical cord mesenchymal stem cells improve the cognitive function in Alzheimer’s disease mice by promoting hippocampal neurogenesis. Nanomedicine 40:102507

    Article  CAS  Google Scholar 

  • Wen X, Wang K, Zhao Z, Zhang Y, Sun T, Zhang F, Wu J, Fu Y, Du Y, Zhang L, Sun Y, Liu Y, Ma K, Liu H, Song Y (2014) Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles. PLoS ONE 9(9):e106652

    Article  Google Scholar 

  • Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky AA (2011) Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65(12):1882–1884

    Article  CAS  Google Scholar 

  • Wu C, Muroski ME, Miska J, Lee-Chang C, Shen Y, Rashidi A, Zhang P, Xiao T, Han Y, Lopez-Rosas A, Cheng Y, Lesniak MS (2019) Repolarization of myeloid derived suppressor cells via magnetic nanoparticles to promote radiotherapy for glioma treatment. Nanomedicine 16:126–137

    Article  CAS  Google Scholar 

  • Wu MR, Lee CH, Hsiao JK (2020) Bidirectional enhancement of cell proliferation between iron oxide nanoparticle-labeled mesenchymal stem cells and choroid plexus in a cell-based therapy model of ischemic stroke. Int J Nanomed 15:9181–9195

    Article  CAS  Google Scholar 

  • Xu X, Huang F, Shao Y, Zhou M, Ren X, Lu X, Zhu J (2017) Improved magnetic and magnetoelectric properties in BaFe(12)O(19) nanostructures. Phys Chem Chem Phys 19(27):18023–18029

    Article  CAS  Google Scholar 

  • Yang H (2010) Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res 27(9):1759–1771

    Article  CAS  Google Scholar 

  • Yarjanli Z, Ghaedi K, Esmaeili A, Rahgozar S, Zarrabi A (2017) Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. Bmc Neurosci 18:1

    Article  Google Scholar 

  • Yuan M, Yan TH, Li J, Xiao Z, Fang Y, Wang Y, Zhou HC, Pellois JP (2021) Superparamagnetic iron oxide-gold nanoparticles conjugated with porous coordination cages: towards controlled drug release for non-invasive neuroregeneration. Nanomedicine 35:102392

    Article  CAS  Google Scholar 

  • Yun S, Shin TH, Lee JH, Cho MH, Kim IS, Kim JW, Jung K, Lee IS, Cheon J, Park KI (2018a) Design of magnetically labeled cells (mag-cells) for in vivo control of stem cell migration and differentiation. Nano Lett 18(2):838–845

    Article  CAS  Google Scholar 

  • Yun WS, Choi JS, Ju HM, Kim MH, Choi SJ, Oh ES, Seo YJ, Key J (2018b) Enhanced homing technique of mesenchymal stem cells using iron oxide nanoparticles by magnetic attraction in olfactory-injured mouse models. Int J Mol Sci 19(5):1376

    Article  Google Scholar 

  • Zeng J, Wu J, Li M, Wang P (2018) A novel magnetic nanoparticle for early detection of amyloid plaques in Alzheimer’s disease. Arch Med Res 49(4):282–285

    Article  CAS  Google Scholar 

  • Zhang M, Kievit FM (2012) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Abstr Pap Am Chem Soc 2012:243

    Google Scholar 

  • Zhang Y, Chen S, Xiao Z, Liu X, Wu C, Wu K, Liu A, Wei D, Sun J, Zhou L, Fan H (2021) Magnetoelectric nanoparticles incorporated biomimetic matrix for wireless electrical stimulation and nerve regeneration. Adv Healthc Mater 2021:e2100695

    Article  Google Scholar 

  • Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X (2015) Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chem Soc Rev 44(6):1379–1415

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by National Key R&D Program of China (2021YFA1101100); National Natural Science Foundation of China (NSFC, 82172218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningwen Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Li, Y., Zhao, X. et al. Recent advances of superparamagnetic iron oxide nanoparticles and its applications in neuroscience under external magnetic field. Appl Nanosci 13, 5489–5500 (2023). https://doi.org/10.1007/s13204-023-02803-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-023-02803-8

Keywords

Navigation