Skip to main content
Log in

One-step chemical synthesis of Ag–Au alloy nanoparticles for modulating the catalytic hydrogenation reaction

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

One-step chemical reduction approach is developed to synthesize nearly monodispersed Ag–Au alloy nanoparticles stabilized by CTAB molecules. By controlling the molar ratios of Ag(I) and Au(III), the surface plasmon resonance (SPR) band of alloy nanoparticles observe between 410 and 530 nm, which are the absorption maxima of silver and gold nanoparticles, respectively. The transmission electron microscope (TEM) shows that the obtained alloy nanoparticles are spherical in shape having size from 12 to 17 nm which provides high catalytic activity towards hydrogenation reactions. The catalytic efficiency of Ag NPs are less compared to pure Au NPs, whereas their activity can be modulated in between these two by appropriately controlling their molar ratio in the resultant Ag–Au alloy NPs. Moreover, with regards to high stability and recyclability, Ag–Au alloy NPs shows ~ 100% conversion efficiency up to five consecutive reaction cycles while monometallic nanoparticle are incapable. Thus, it is possible to modulate and enhance the catalytic activity of Ag NPs by making an alloy with Au NPs of desired composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Banadaki AD, Kajbafvala A (2014) Recent advances in facile synthesis of bimetallic nanostructures: an overview. J Nanomater 985948:1

    Article  Google Scholar 

  • Berahim N, Basirun WJ, Leo BF, Johan MR (2018) Synthesis of bimetallic gold–silver (Au–Ag) nanoparticles for the catalytic reduction of 4-nitrophenol to 4-aminophenol. Catalysts 8:412

    Article  Google Scholar 

  • Chen HY, Li Y, Zhang FB, Zhang GL, Fan XB (2011) Graphene supported Au–Pd bimetallic nanoparticles with core–shell structures and superior peroxidase-like activities. J Mater Chem 21:17658–17661

    Article  CAS  Google Scholar 

  • Chou KS, Ren CY (2000) Synthesis of nanosized silver particles by chemical reduction method. Mater Chem Phys 64:241–246

    Article  CAS  Google Scholar 

  • Clayden J, Greeves N, Warren S, Wothers P (2001) Organic chemistry, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  • Creighton JA, Eadon DG (1991) UV–vis spectra of colloidal metallic elements. J Chem Soc Faraday Trans 87:3881–3891

    Article  CAS  Google Scholar 

  • Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  CAS  Google Scholar 

  • Gao C, Hu Y, Wang M, Chi M, Yin Y (2014) Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au. J Am Chem Soc 136:7474–7479

    Article  CAS  Google Scholar 

  • Gao S, Zhang Z, Liu K, Dong B (2016) Direct evidence of plasmonic enhancement on catalytic reduction of 4-nitrophenol over silver nanoparticles supported on flexible fibrous networks. Appl Catal B Environ 188:245–252

    Article  CAS  Google Scholar 

  • Ghosh S, Satapathy SS, Ghosh K, Jauhari S, Panda SK, Si S (2019) Carbon dots assisted synthesis of gold nanoparticles and their catalytic activity in 4-nitrophenol reduction. ChemistrySelect 4:3416–3422

    Article  CAS  Google Scholar 

  • Gomes JF, Garcia AC, Ferreira EB, Pires C, Oliviera VL, Tremiliosi-Filho G, Gasparotto LHS (2015) New insight into the formation mechanism of the Ag, Au and AgAu nanoparticles in aqueous alkaline media; alkoxide from alcohols, aldehydes and ketones as the universal reducing agent. Phys Chem Chem Phys 17:21683–21693

    Article  CAS  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  • Kozlova D, Meyer-Zaika W, Epple M (2014) An easy synthesis of autofluorescent alloyed silver–gold nanoparticles. J Mater Chem B 2:7887–7895

    Article  Google Scholar 

  • Leduc C, Si S, Gautier J, Soto-Ribeiro M, Wehrle-Haller B, Gautreau A, Giannone G, Cognet L, Lounis B (2013) A highly specific gold nanoprobe for live-cell single-molecule imaging. Nano Lett 13:1489–1494

    Article  CAS  Google Scholar 

  • Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103:3529–3533

    Article  CAS  Google Scholar 

  • Liu J, Wang A, Chi Y, Lin H, Mou C (2005) Synergistic effect in an Au–Ag alloy nanocatalyst: CO oxidation. J Phys Chem B 109:40–43

    Article  CAS  Google Scholar 

  • Liu S, Chen G, Prasad PN, Swihart MT (2011) Synthesis of monodisperse Au, Ag, and Au–Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency. Chem Mater 23:4098–4101

    Article  CAS  Google Scholar 

  • Mohanta J, Satapathy S, Si S (2016) Porous silica-coated gold nanorods: a highly active catalyst for the reduction of 4-nitrophenol. ChemPhysChem 17:364–368

    Article  CAS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  • Nath S, Ghosh SK, Panigrahi S, Pal T (2004) Aldehyde assisted wet chemical route to synthesize gold nanoparticles. Ind J Chem 43A:1147–1151

    CAS  Google Scholar 

  • Pal A, Shah S, Devi S (2007) Synthesis of Au, Ag and Au–Ag alloy nanoparticles in aqueous polymer solution. Colloids Surf A Physicochem Eng Asp 302:51–57

    Article  CAS  Google Scholar 

  • Rajan A, Meenakumari M, Daizy P (2014) Shape tailored green synthesis and catalytic properties of gold nanocrystals. Spectrochim Acta Part A Mol Biomol Spectrosc 118:793–799

    Article  CAS  Google Scholar 

  • Ren X, Cao E, Lin W, Song Y, Liangc W, Wang J (2017) Recent advances in surface plasmon-driven catalytic reactions. RSC Adv 7:31189–31203

    Article  CAS  Google Scholar 

  • Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  • Sánchez-Ramírez JF, Pal U, Nolasco-Hernández L, Mendoza-Álvarez J, Pescador-Rojas JA (2008) Synthesis and optical properties of Au–Ag alloy nanoclusters with controlled composition. J Nanomater 2008:620412. https://doi.org/10.1155/2008/620412

    Article  CAS  Google Scholar 

  • Santos KDO, Elias WC, Signori AM, Giacomelli FC, Yang H, Domingos JB (2012) Synthesis and catalytic properties of silver nanoparticle-linear polyethylene imine colloidal systems. J Phys Chem C 116:4594–4604

    Article  CAS  Google Scholar 

  • Satapathy S, Mohanta J, Si S (2016) Modulating the catalytic activity of gold nanoparticles through surface tailoring. ChemistrySelect 1:4940–4948

    Article  Google Scholar 

  • Satapathy SS, Bhol P, Chakkarambath A, Mohanta J, Samantaray K, Bhat SK, Panda SK, Mohanty PS, Si S (2017) Thermo-responsive PNIPAM-metal hybrids: an efficient nanocatalyst for the reduction of 4-nitrophenol. Appl Surf Sci 420:753–763

    Article  CAS  Google Scholar 

  • Shao L, Susha AS, Cheung LS, Sau TK, Rogach AL, Wang J (2012) Plasmonic properties of single multispiked gold nanostars: correlating modeling with experiments. Langmuir 28:8979–8984

    Article  CAS  Google Scholar 

  • Sharma AK, Gupta BD (2006) Fibre-optic sensor based on surface plasmon resonance with Ag–Au alloy nanoparticle films. Nanotechnology 17:124–131

    Article  CAS  Google Scholar 

  • Shore MS, Wang J, Johnston-Peck AC, Oldenburg AL, Tracy JB (2011) Synthesis of Au(core)/Ag(shell) nanoparticles and their conversion to AuAg alloy nanoparticles. Small 7:230–234

    Article  CAS  Google Scholar 

  • Si S, Mandal TK (2007) Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chem Eur J 13:3160–3168

    Article  CAS  Google Scholar 

  • Si S, Bhattacharjee RR, Banerjee A, Mandal TK (2006) A mechanistic and kinetic study of the formation of metal nanoparticles by using synthetic tyrosine-based oligopeptides. Chem Eur J 12:1256–1265

    Article  CAS  Google Scholar 

  • Singh AK, Xu Q (2013) Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5:652–676

    Article  CAS  Google Scholar 

  • Son M, Lee J, Jang DJ (2014) Light-treated silica-coated gold nanorods having highly enhanced catalytic performances and reusability. J Mol Catal A Chem 385:38–45

    Article  CAS  Google Scholar 

  • Sun L, Yin Y, Wang F, Su W, Zhang L (2018) Facile one-pot green synthesis of Au–Ag alloy nanoparticles using sucrose and their composition-dependent photocatalytic activity for the reduction of 4-nitrophenol. Dalton Trans 47:4315–4324

    Article  CAS  Google Scholar 

  • Supriya D, Bera P, Sampath S (2005) Bimetallic nanoparticles: a single step synthesis, stabilization, and characterization of Au–Ag, Au–Pd, and Au–Pt in sol–gel derived silicates. J Colloid Interface Sci 290:117–129

    Article  Google Scholar 

  • Wu H, Wu Z, Liu B, Zhao X (2020) Can plasmonic effect cause an increase in the catalytic reduction of p-nitrophenol by sodium borohydride over Au nanorods? ACS Omega 5:11998–12004

    Article  CAS  Google Scholar 

  • Yallappa S, Manjanna J, Dhananjaya BL (2015) Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta Part A Mol Biomol Spectrosc 137:236–243

    Article  CAS  Google Scholar 

  • Zhao P, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles coordination. Chem Rev 287:114–136

    CAS  Google Scholar 

Download references

Funding

This work is supported from the grant (SR/S2/RJN-42/2012) received by Dr. Si from SERB, Department of Science and Technology, Government of India on account of his Ramanujan Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

SSS has executed the experiments and analyzed the data and prepared the manuscript. SS has designed and coordinated the entire process.

Corresponding author

Correspondence to Satyabrata Si.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

Available on demand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satapathy, S.S., Si, S. One-step chemical synthesis of Ag–Au alloy nanoparticles for modulating the catalytic hydrogenation reaction. Appl Nanosci 10, 4139–4148 (2020). https://doi.org/10.1007/s13204-020-01523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01523-7

Keywords

Navigation