Skip to main content
Log in

Phoretic and internal transport of Raffaelea lauricola by different species of ambrosia beetle associated with avocado trees

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Fungus farming ambrosia beetles carry their nutritional mutualistic fungi in specialized structures called mycetangia. Fungal propagules are also dispersed phoretically on the beetle’s exoskeleton. We determined the phoretic presence and abundance of Raffaelea lauricola, the causal agent of the laurel wilt disease in avocado, on five ambrosia beetle species: Xyleborus bispinatus, Xyleborus volvulus, Xyleborus affinis, Xyleborinus saxesenii and Xylosandrus crassiusculus. Beetles were captured while in flight, excavated from logs, and from logs placed in emergence chambers. Beetles collected by the three methods were assayed for the presence of internal (gut and mycetangium) and external (attached to the exoskeleton) colony forming units (CFUs) of R. lauricola. The pathogen was recovered from the exoskeleton of all beetle species. The collection method significantly influenced the frequency of pathogen recovery, and the abundance of both internal and phoretic R. lauricola was species-specific. Internal CFUs recovery was greater than phoretic recovery. Besides R. lauricola, other cycloheximide tolerant fungi, including mutualistic and entomopathogenic fungi, were isolated from the beetle’s exoskeleton. However, phoretic CFUs of R. lauricola were more prevalent and abundant than any other mutualistic phoretic fungi across the beetle species. Our results suggest that phoresy is a common mechanism of transportation of wood-inhabiting fungi and that phoretic transmission of R. lauricola may potentially contribute to the infection in avocado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The authors confirm that the data supporting the findings of this study are available within the article.

Code availability

Not applicable.

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Atkinson TH, Carrillo D, Duncan RE, Peña JE (2013) Occurrence of Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae) Eichhoff in southern Florida. Zootaxa 3669:96–100

    Article  PubMed  Google Scholar 

  • Avery PB, Bojorque V, Gámez C, Duncan RE, Carrillo D, Cave RD (2018) Spore acquisition and survival of ambrosia beetles associated with the laurel wilt pathogen in avocados after exposure to entomopathogenic fungi. Insects 9:2

    Article  Google Scholar 

  • Batra LR (1963) Ecology of ambrosia fungi and their dissemination by beetles. Trans Kans Acad Sci 66:213–236

    Article  Google Scholar 

  • Beaver RA (1989) Insect–fungus relationships in the bark and ambrosia beetles. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interaction. Academic Press, London, pp 121–143

    Chapter  Google Scholar 

  • Biedermann PHW, Vega FE (2020) Ecology and evolution of insect – fungus mutualisms. Annu Rev Entomol 65:431–455

    Article  CAS  PubMed  Google Scholar 

  • Bleiker KP, Six DL (2009) Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees. Microb Ecol 57:191–202

    Article  CAS  PubMed  Google Scholar 

  • Brar GS, Capinera JL, Kendra PE, McLean S, Peña JE (2013) Life cycle, development, and culture of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Fla Entomol 96:1158–1167

    Article  Google Scholar 

  • Campbell AS, Ploetz RC, Dreaden TJ, Kendra PE, Montgomery WS (2016) Geographic variation in mycangial communities of Xyleborus glabratus. Mycologia 108:657–667

    Article  CAS  PubMed  Google Scholar 

  • Carrillo D, Duncan RE, Peña JE (2012) Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) that breed in avocado wood in Florida. Fla Entomol 95:573–579

    Article  Google Scholar 

  • Carrillo D, Duncan RE, Ploetz JN, Campbell AF, Ploetz RC, Peña JE (2014) Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol 63:54–62

    Article  Google Scholar 

  • Carrillo D, Dunlap CA, Avery PB, Navarrete J, Duncan RE, Jackson MA, Behle RW, Cave RD, Crane J, Rooney AP, Peña JE (2015) Entomopathogenic fungi as biological control agents for the vector of the laurel wilt disease, the redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae). Biol Control 81:44–50

    Article  Google Scholar 

  • Carrillo D, Cruz LF, Kendra PE, Narvaez TI, Montgomery SW, Monterroso A, DeGrave C, Cooperband MF (2016) Distribution, pest status, and fungal associates of Euwallacea nr. fornicatus in Florida avocado groves. Insects 7:55

    Article  PubMed Central  Google Scholar 

  • Cassar S, Blackwell M (1996) Convergent origins of ambrosia fungi. Mycologia 88:596–601

    Article  Google Scholar 

  • Cognato AI, Hulcr J, Dole SA, Jordal BH (2011) Phylogeny of haplo-diploid, fungus-growing ambrosia beetles (Curculionidae: Scolytinae: Xyleborini) inferred from molecular and morphological data. Zool Scr 40:174–186

    Article  Google Scholar 

  • Cruz LF, Rocio SA, Duran LG, Menocal O, Garcia-Avila CDJ, Carrillo D (2018) Developmental biology of Xyleborus bispinatus (Coleoptera: Curculionidae) reared on an artificial medium and fungal cultivation of symbiotic fungi in the beetle's galleries. Fungal Ecol 35:116–126

    Article  Google Scholar 

  • Cruz LF, Menocal O, Mantilla J, Ibarra-Juarez LA, Carrillo D (2019) Xyleborus volvulus (Coleoptera: Curculionidae): biology and fungal associates. Appl Environ Microbiol 85:e01190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dole SA, Jordal B, Cognato AI (2010) Polyphyly of Xylosandrus Reitter inferred from nuclear and mitochondrial genes. Mol Phylogenet Evol 54:773–782

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf 435 tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dreaden TJ, Davis JM, Harmon CL, Ploetz RC, Palmateer AJ, Soltis PS, Smith JA (2014a) Development of multilocus PCR assays for Raffaelea lauricola, causal agent of laurel wilt disease. Plant Dis 98:379–383

    Article  CAS  PubMed  Google Scholar 

  • Dreaden TJ, Davis JM, de Beer WZ, Ploetz RC, Soltis P, Wingfield M, Smith J (2014b) Phylogeny of ambrosia beetle symbionts in the genus Raffaelea. Fungal Biol 118:970–978

    Article  PubMed  Google Scholar 

  • Farish DJ, Axtell RC (1971) Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina:Macrochelidae). Acarologia 13:16–29

    Google Scholar 

  • Fraedrich SW, Harrington TC, Rabaglia RJ, Ulyshen MD, Mayfield AE, Hanula JL, Eickwort JM, Miller DR (2008) A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis 92:215–224

    Article  CAS  PubMed  Google Scholar 

  • Francke-Grosmann H (1956) Hautdrüsen als Träger der Pilzsysmbiose bei Ambrosiakäfern. Z Morphol Okol Tiere 45:275–308

    Article  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez DF, Rabaglia RJ, Fairbanks KEO, Hulcr J (2018) North American Xyleborini north of Mexico: a review and key to genera and species (Coleoptera, Curculionidae, Scolytinae). ZooKeys 768:19–68

    Article  Google Scholar 

  • Harrington TC (2005) Ecology and evolution of mycophagous bark beetles and their fungal partners. In: Vega FE, Blackwell M (eds) Ecological and evolutionary advances in insect-fungal associations. Oxford University Press, Oxford, pp 257–291

    Google Scholar 

  • Harrington TC, Aghayeva DN, Fraedrich SW (2010) New combinations in Raffaelea, Ambrosiella, and Hyalorhinocladiella, and four new species from the redbay ambrosia beetle, Xyleborus glabratus. Mycotaxon 111:337–361

    Article  Google Scholar 

  • Harrington TC, McNew D, Mayers C, Fraedrich SW, Reed SE (2014) Ambrosiella roeperi sp. nov. is the mycangial symbiont of the granulate ambrosia beetle, Xylosandrus crassiusculus. Mycologia 106:835–845

    Article  PubMed  Google Scholar 

  • Houck MA, OConnor BM (1991) Ecological and evolutionary significance of phoresy in the Astigmata. Annu Rev Entomol 36:611–636

    Article  Google Scholar 

  • Hughes MA, Smith JA, Ploetz RC, Kendra PE, Mayfield AE, Hanula JL, Hulcr J, Stelinski LL, Cameron S, Riggins JJ, Carrillo D, Rabaglia R, Eickwort J, Pernas T (2015) Recovery plan for laurel wilt on redbay and other forest species caused by Raffaelea lauricola and disseminated by Xyleborus glabratus. Plant Heal Prog 16:173–210

    Article  Google Scholar 

  • Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. Proc Royal Soc B 278:2866–2873

    Article  Google Scholar 

  • Hulcr J, Stelinski LL (2017) The Ambrosia Symbiosis: from evolutionary ecology to practical management. Annu Rev Entomol 62:285–303

    Article  CAS  PubMed  Google Scholar 

  • Kendra PE, Montgomery WS, Sanchez JS, Deyrup MA, Niogret J, Epsky ND (2012) Method for collection of live redbay ambrosia beetles, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Fla Entomol 95:513–516

    Article  Google Scholar 

  • Kendra PE, Montgomery WS, Niogret J, Epsky ND (2013) An uncertain future for American Lauraceae: a lethal threat from redbay ambrosia beetle and laurel wilt disease (a review). Am J Plant Sci 4:727–738

    Article  Google Scholar 

  • Kendra PE, Montgomery WS, Niogret J, Pruett GE, Mayfield AE III, MacKenzie M, Deyrup MA, Bauchan GR, Ploetz RC, Epsky ND (2014) North American Lauraceae: Terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). PLoS One 9:e102086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kendra PE, Owens D, Montgomery WS, Narvaez TI, Bauchan GR, Schnell EQ, Tabanca M, Carrillo D (2017) α-Copaene is an attractant, synergistic with quercivorol, for improved detection of Euwallacea nr. fornicatus (Coleoptra: Curculionidae: Scolytinae). Plos One 12:e0179416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kendra PE, Montgomery WS, Narvaez TI, Carrillo D (2020) Comparison of trap designs for detection of Euwallacea nr. fornicatus and other Scolytinae (Coleoptera: Curculionidae) that vector fungal pathogens of avocado trees in Florida. J Econ Entomol 113:980–987

    Article  PubMed  Google Scholar 

  • Kirkendall LR, Biedermann PHW, Jordal BH (2015) Evolution and diversity of bark and ambrosia beetles. In: Hofstetter RW (ed) Bark beetles: biology and ecology of native and invasive species Vega FE. Elsevier Inc., San Diego, pp 85–156

    Chapter  Google Scholar 

  • Klepzig KD, Six DL (2004) Bark beetle-fungal symbiosis: context dependency in complex associations. Symbiosis 37:189–205

    Google Scholar 

  • Kok LT, Norris DM, Chu HM (1970) Sterol metabolism as a basis for a mutualistic symbiosis. Nature 225:661–662

    Article  CAS  PubMed  Google Scholar 

  • Kolařík M, Kostovčík M, Pažoutová S (2007) Host range and diversity of the genus Geosmithia (Ascomycota: Hypocreales) living in association with bark beetles in the Mediterranean area. Mycol Res 111:1298–1310

    Article  PubMed  CAS  Google Scholar 

  • Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, Hulcr J (2015) The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J 9:126–138

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Huang YT, Kasson MT, Macias AM, Skelton J, Carlson PS, Yin M, Hulcr J (2018) Specific and promiscuous ophiostomatalean fungi associated with Platypodinae ambrosia beetles in the southeastern United States. Fungal Ecol 35:42–50

    Article  Google Scholar 

  • Li Y, Ruan YY, Stanley EL, Skelton J, Hulcr J (2019) Plasticity of mycangia in Xylosandrus ambrosia beetles. Insect Sci 26:732–742

    Article  PubMed  Google Scholar 

  • Lin YT, Shih HH, Hulcr J, Lin CS, Lu SS, Chen CY (2017) Ambrosiella in Taiwan including one new species. Mycoscience 58:242–252

    Article  Google Scholar 

  • Malloch D, Blackwell M (1993) Dispersal biology of ophiostomatoid fungi. In: Wingfield MJ, Seifert KA, Webber JF (eds) Ceratocystis and Ophiostoma: taxonomy, ecology and pathology. APS Press, St. Paul, pp 195–206

    Google Scholar 

  • Martin MM (1979) Biochemical implications of insect mycophagy. Biol Rev 54:1–21

    Article  CAS  Google Scholar 

  • Mayers CG, McNew DL, Harrington TC, Roeper RA, Fraedrich SW, Biedermann PHW, Castrillo LA, Reed SE (2015) Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biol 119:1075–1092

    Article  PubMed  Google Scholar 

  • Magyar D, Vas M, Li DW (2016) Dispersal strategies of microfungi. In: Li DW (ed) Biology of microfungi, fungal biology. Springer International Publishing, Switzerland, pp 315–371

    Chapter  Google Scholar 

  • Menocal O, Kendra PE, Montgomery WS, Crane JH, Carrillo D (2018a) Vertical Distribution and Daily Flight Periodicity of Ambrosia Beetles (Coleoptera: Curculionidae) in Florida Avocado Orchards Affected by Laurel Wilt. Journal of Economic Entomology 111:1190–1196

    Article  PubMed  Google Scholar 

  • Menocal O, Cruz LF, Kendra PE, Crane JH, Ploetz RC, Carrillo D (2017) Rearing Xyleborus volvulus (Coleoptera: Curculionidae) on media containing sawdust from avocado or silkbay, with or without Raffaelea lauricola (Ophiostomatales: Ophiostomataceae). Environ Entomol 46:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Menocal O, Cruz LF, Kendra PE, Crane JH, Cooperband MF, Ploetz RC, Carrillo D (2018b) Xyleborus bispinatus reared on artificial media in the presence or absence of the laurel wilt pathogen (Raffaelea lauricola). Insects 9:30

    Article  PubMed Central  Google Scholar 

  • Mercado JE, Hofstetter RW, Reboletti DM, Negron JF (2014) Phoretic symbionts of the mountain pine beetle (Dendroctonus ponderosae Hopkins). For Sci 60:512–526

    Article  Google Scholar 

  • Norris DM (1979) The mutualistic fungi of Xyleborini beetles. In: Batra LR (ed) Insect fungus symbiosis. Allanheld, Osmun and Co, Montclair, pp 53–63

    Google Scholar 

  • Norros V, Karhu E, Nordén J, Vähätalo AV, Ovaskainen O (2015) Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi. Ecol Evol 5:3312–3326

    Article  PubMed  PubMed Central  Google Scholar 

  • Pennacchio F, Roversi PF, Francardi V, Gatti E (2003) Xylosandrus crassiusculus (Motschulsky) fa bark beetle new to Europe. Redia 86:77–80

    Google Scholar 

  • Ploetz RC, Perez-Martinez JM, Smith JA, Hughes M, Dreaden TJ, Inch SA, Fu SY (2012) Responses of avocado to laurel wilt, caused by Raffaelea lauricola. Plant Pathol 61:801–808

    Article  Google Scholar 

  • Ploetz RC, Konkol JL, Narvaez T, Duncan RE, Saucedo RJ, Campbell A, Mantilla J, Carrillo D, Kendra PE (2017) Presence and prevalence of Raffaelea lauricola, cause of laurel wilt, in different species of ambrosia beetle in Florida, USA. J Econ Entomol 110:347–354

    PubMed  Google Scholar 

  • Rabaglia RJ, Dole SA, Cognato AI (2006) Review of American Xyleborina (Coleoptera: Curculionidae: Scolytinae) occurring north of Mexico, with an illustrated key. Ann Entomol Soc Am 99:1034–1056

    Article  Google Scholar 

  • Rivera MJ, Martini X, Conover D, Mafra-Neto A, Carrillo D, Stelinski LL (2020) Evaluation of semiochemical based push-pull strategy for population suppression off ambrosia beetle vectors of laurel wilt disease in avocado. Sci Rep 10:2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saucedo JR, Ploetz RC, Konkol JL, Angel M, Mantilla J, Menocal O, Carrillo D (2017) Nutritional symbionts of a putative vector, Xyleborus bispinatus, of the laurel wilt pathogen of avocado, Raffaelea lauricola. Symbiosis 75:29–38

    Article  CAS  Google Scholar 

  • Saucedo-Carabez JR, Ploetz RC, Konkol JL, Carrillo D, Gazis R (2018) Partnerships between ambrosia beetles and fungi: lineage-specific promiscuity among vectors of the laurel wilt pathogen, Raffaelea lauricola. Microb Ecol 76:925–940

    Article  CAS  PubMed  Google Scholar 

  • Six DL (2003) Bark beetle-fungus symbioses. In: Bourtzis K, Miller T (eds) Insect symbiosis. CRC Press, Boca Raton, pp 97–114

    Chapter  Google Scholar 

  • Six DL, Wingfield MJ (2011) The role of Phytopathogenicity in bark beetle–fungus symbioses: a challenge to the classic paradigm. Annu Rev Entomol 56:255–272

    Article  CAS  PubMed  Google Scholar 

  • Six DL (2012) Ecologial and evolutionary determinants of bark beetle-fungus symbioses. Insects. 3:339–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Skelton J, Johnson AJ, Jusino MA, Bateman CC, Li Y, Hulcr J (2019) A selective fungal transport organ (mycangium) maintains coarse phylogenetic congruence between fungus-farming ambrosia beetles and their symbionts. Proc Royal Soc B 286:20182127

    Article  CAS  Google Scholar 

  • Vega FE, Biedermann PHW (2020) On interactions, associations, Mycetangia, mutualists and Symbiotes in insect-fungus symbioses. Fungal Ecol 44:100909

    Article  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172(560):4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA, pp 315–322

    Google Scholar 

  • Webber J (2004) Experimental studies on factors influencing the transmission of Dutch elm disease. Invest Agrar: Sist Recur For 13:197–205

    Google Scholar 

  • Wood SL (1982) The bark and ambrosia beetles of north and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Nat Mem 6:1–1359

    Google Scholar 

Download references

Acknowledgments

We thank Rita Duncan and Armando Padilla for their help with the specimen collections. We thank Joshua Konkol (University of Florida) and Greg Wheeler (USDA-ARS) for suggestions to improve the manuscript. We thank James Colee for advice on statistical analyses. We thank Medora Krome for allowing access to the field site. This research was funded by NIFA grant 2015-51181-24257 and USDA ARS-UF Non-Assistance Cooperative Agreement No. 5860388004 to Daniel Carrillo. The findings and conclusions in this preliminary publication have not been formally disseminated by the U.S. Department of Agriculture and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA; USDA is an equal opportunity provider and employer.

Funding

This research was funded by NIFA grant 2015–51181-24257 and USDA ARS-UF Non-Assistance Cooperative Agreement No. 5860388004 to Daniel Carrillo.

Author information

Authors and Affiliations

Authors

Contributions

Luisa F. Cruz and Daniel Carrillo conceived and planned the experiments; Luisa F. Cruz and Octavio Menocal carried out the experiments; Paul E. Kendra provided critical feedback and contributed with the edition of the manuscript; Luisa F. Cruz and Daniel Carrillo wrote the paper.

Corresponding author

Correspondence to Luisa F. Cruz.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest/competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, L.F., Menocal, O., Kendra, P.E. et al. Phoretic and internal transport of Raffaelea lauricola by different species of ambrosia beetle associated with avocado trees. Symbiosis 84, 151–161 (2021). https://doi.org/10.1007/s13199-021-00776-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-021-00776-2

Keywords

Navigation