Skip to main content
Log in

Design of sub-6 GHz antenna using negative permittivity metamaterial for 5G applications

  • Original article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

The objective of the presented article is to design a compact multiband metamaterial antenna that meets the frequency requirement of 5G. The antenna is designed using High Frequency structure simulator that implements finite element method. Four Hexagonal complementary split ring resonators acts as metamaterial and is embedded on the monopole. The addition of CSRR (complementary split ring resonator) on hexagonal monopole introduces negative permittivity in the material and produces band of frequencies that operate under sub-6 GHz. The existence of metamaterial characteristic (negative permittivity) is verified and extracted through simulation in CST (Computer simulation tool) with the help of finite integration technique. The equivalent electrical circuit of the resonating structure is modelled and discussed. The prototype is constructed with size of 20 × 20 × 1. 6mm3 on FR4 substrate and measured. The reflection coefficient over the entire frequency range is less than −10 dB and has good impedance matching. The VSWR is below 2 and the antenna meets the present demand for 5G applications in sub 6 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Arya A, Kim S, Kim S (2020) A dual-band antenna for LTE-R and 5G lower frequency operations. Prog Electromag Res Lett 88:113. https://doi.org/10.2528/PIERL19081502

    Article  Google Scholar 

  • Ashyap AYI, Dahlan SH, Abidin ZZ et al (2021) C-shaped antenna based artificial magnetic conductor structure for wearable IoT healthcare devices. Wireless Netw 27:4967–4985. https://doi.org/10.1007/s11276-021-02770-4

    Article  Google Scholar 

  • Attar HH, Solyman AAA, Alrosan A et al (2021) Deterministic cooperative hybrid ring-mesh network coding for big data transmission over lossy channels in 5G networks. J Wireless Com Network 2021:159. https://doi.org/10.1186/s13638-021-02032-z

    Article  Google Scholar 

  • Baena JD et al (2005) Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans Microw Theory Tech 53:1451–1461. https://doi.org/10.1109/TMTT.2005.845211

    Article  Google Scholar 

  • Chakraborty C, Rodrigues J (2020) A Comprehensive review on device-to-device communication paradigm: trends. Challenges Appl Wireless Personal Commun 114:185–207. https://doi.org/10.1007/s11277-020-07358-3

    Article  Google Scholar 

  • Chen H, Zhang J, Bai Y, Luo Y, Ran L, Jiang Q, Kong JA (2006) Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. Opt Exp 14:12944–12949

  • Daniel RS, Pandeeswari R, Raghavan S (2017) Offset-fed complementary split ring resonators loaded monopole antenna for multiband operations. AEU Int Electron Commun 78:72–78

    Article  Google Scholar 

  • Farasat M, Thalakotuna DN, Hu Z, Yang Y (2021) A review on 5G Sub-6 GHz base station antenna design challenges. Electronics 10(16):2000. https://doi.org/10.3390/electronics10162000

    Article  Google Scholar 

  • Gil M, Bonache J, Martin F (2008) Synthesis and applications of new left handed microstrip lines with complementary split-ring resonators etched on the signal strip. IET Microwaves Antennas Propag 2:324–330. https://doi.org/10.1049/ietmap:20070225

    Article  Google Scholar 

  • Guirong F, Lei C, Xinwei W, Xingsi X, Xiaowei S (2018) Broadband circularly polarized crossed bowtie dipole antenna loaded with parasiticelements. IEEE Antennas Wirel Propag Lett 17:114

    Article  Google Scholar 

  • Herraiz-Martinez FJ, Zamora G, Paredes F, Martin F, Bonache J (2011a) Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs. IEEE Antennas Wirel Propag Lett 10:1528–1531

    Article  Google Scholar 

  • Herraiz-Martinez FJ, Zamora G, Paredes F, Martin F, Bonache J (2011b) Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs. IEEE Antennas Wireless Propag Lett 10:1528–1531. Doi: https://doi.org/10.1109/LAWP.2011.2181309.

  • Huang H, Zhao W (2015) A triple-band multi-functional antenna for LTE/GSM/UMTS/WiMAX handsets. Asia Pacific Microwave Conf (APMC) 2015:1–3. https://doi.org/10.1109/APMC.2015.7413006

    Article  Google Scholar 

  • Internet of Things (2018) [Online]. Available: https://semielectronics.com/sensors-lifeblood-internet-things/

  • Kamboh UR, Ullah U, Khalid S et al (2021) Path loss modelling at 60 GHz mmWave based on cognitive 3D ray tracing algorithm in 5G. Peer-to-Peer Netw Appl 14:3181–3197. https://doi.org/10.1007/s12083-021-01101-w

    Article  Google Scholar 

  • Kumar-Naik K (2018) Asymmetric CPW-fed SRR patch antenna for WLAN/WiMAX applications AEU Int. J Electron Commun 93:103

    Google Scholar 

  • Li R, Zhang Q, Kuang Y, Chen X, Xiao Z, Zhang J (2019) Design of a miniaturized antenna based on split ring resonators for 5G wireless communications. In Proceedings of the 2019 cross strait quad-regional radio science and wireless technology conference (CSQRWC), Taiyuan, China, pp 1–4

  • Pandeeswari R, Raghavan S (2015) Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement. Microwave Opt Technol Lett 57:292–296

  • Rajabloo HV, Amiri-Kooshk HO (2016) Compact microstrip fractal Koch slot antenna with ELC coupling load for triple band application. Int J Electron Commun AEU. 73:144. Doi: https://doi.org/10.1016/j.aeue.2016.12.0279

  • Rajanna PKT, Rudramuni K, Kandasamy K (June 2019) A high-gain circularly polarized antenna using zero-index metamaterial. IEEE Antennas Wirel Propag Lett 18(6):1129–1133. https://doi.org/10.1109/LAWP.2019.2910805

    Article  Google Scholar 

  • Rengasamy R, Dhanasekaran D, Chakraborty C, Ponnan S (2021) Modified minkowski fractal multiband antenna with circular-shaped split-ring resonator for wireless applications. Measurement. 182:109766. Doi: https://doi.org/10.1016/j.measurement.2021.109766.

  • Samson DR, Pandeeswari R, Raghavan S (2017) Design analysis of open complementary split ring resonators loaded monopole antenna for multiband operation. Prog Electromag Res C 78:173–182

    Article  Google Scholar 

  • Samson R, Daniel R, Raghavan PS (2018) A miniaturized printed monopole antenna loaded with hexagonal complementary split ring resonators for multiband operations. Int J RF Microw Comput Aided Eng 28:7. Doi: https://doi.org/10.1002/mmce.21401

  • Sekeljic N, Yao Z (2019) Hsu H 5G broadband antenna for sub-6 GHz wireless applications. In: IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting, Atlanta, GA, USA, pp 147–148. Doi: https://doi.org/10.1109/APUSNCURSINRSM.2019.8888509.

  • Skrivervik AK, Zürcher JF, Staub O, Mosig JR (2001) PCS antenna design: the challenge of miniaturization. IEEE Antennas Propag Mag. 43:12

  • Smith DR, Schultz S, Markos P, Soukoulis CM (2002 ) Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev Lett B 65:195104–195109

  • Taheri MMS, Abdipour A, Pedersen GF (2017) Compact penta band printed slot antenna for GSM, Bluetooth, WiMAX, 4G LTE, and WLAN applications. In: 2017 11th European conference on antennas and propagation (EUCAP), pp 2152–2154. Doi: https://doi.org/10.23919/EuCAP.2017.7928813

  • Trinh LH et al (2017) Miniature antenna for IoT devices using LoRa technology. Int Conf Adv Technol Commun (ATC) 2017:170–173. https://doi.org/10.1109/ATC.2017.8167611

    Article  Google Scholar 

  • Ullah SA, Khan BA, Tahir FA, Flint JA (2018) An hp-shape hexa-band antenna for multi-standard wireless communication systems. Wireless Netw 24(157)

  • Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Sov Phys Usp 10:509–514

    Article  Google Scholar 

  • Xu HX, Wang GM, Zhang CX, Peng Q (2012) Complementary metamaterial transmission line for monoband and dual-band bandpass filters application. Int J RF Microwave Comput Aid Eng 22:200–210

    Article  Google Scholar 

  • Xu Y, Han X, Wang GM, Lv YY, Qi MQ, Gao X, Ge S (2013) Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit. Prog Electromag Res 137:703–725

Download references

Funding

No funding is applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shobana.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Human Participants and/or Animals

The research does not involve human participant.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shobana, M., Pandeeswari, R. & Raghavan, S. Design of sub-6 GHz antenna using negative permittivity metamaterial for 5G applications. Int J Syst Assur Eng Manag 13, 2040–2052 (2022). https://doi.org/10.1007/s13198-022-01617-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-022-01617-1

Keywords

Navigation