Skip to main content
Log in

Preparation, characterization and functional properties of Moringa oleifera seed protein isolate

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Moringa seed protein isolate (MPI) was prepared by aqueous salt extraction followed by watering-out to precipitate proteins. Extraction and precipitation steps were optimized to achieve maximum MPI yield. Besides, MPI was characterized based on its composition and functional properties. Among the multiple salts examined, Na2SO4 (69.9%), KCl (66.2%), NaCl (65.4%), and NaBr (63.5%) displayed better protein extractability as well as higher MPI yield (~ 52%) with a protein content of > 90% d.b. However, NaCl was preferred considering its wider acceptance. Based on response surface methodology analysis, solvent-to-flour ratio, 22:1 (v/w), NaCl concentration, 0.4 M and temperature, 55 °C were found optimal for maximum protein extractability of 70.3%. Subsequent watering-out resulted in a maximum MPI yield of 56% (protein basis). MPI contained all the protein subunits (6.5, 14, 29 kDa) present in its source. It also scored over commercial soy protein isolate in many of the functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adebiyi AP, Adebiyi AO, Ogawa T, Muramoto K (2007) Preparation and characterization of high-quality rice bran proteins. J Sci Food Agric 87:1219–1227

    Article  CAS  Google Scholar 

  • AOAC (2005) International methods 925.10. In: Official methods of analysis of association of official analytical chemists, 18th edn. Washington

  • Arrese EL, Sorgentini DA, Wagner JR, Anon MC (1991) Electrophoretic, solubility and functional properties of commercial soy protein isolates. J Agric Food Chem 39:1029–1032

    Article  CAS  Google Scholar 

  • Che J, Su B, Tang B et al (2017) Apparent digestibility coefficients of animal and plant feed ingredients for juvenile Pseudobagrus ussuriensis. Aquac Nutr. https://doi.org/10.1111/anu.12481

    Article  Google Scholar 

  • Damodaran S (1996) Amino acids, peptides and proteins. In: Food chemistry, 3rd edn. CRC Press, pp 321–329

  • Deng Q, Wang L, Wei F et al (2011) Functional properties of protein isolates, globulin and albumin extracted from Ginkgo biloba seeds. Food Chem 124:1458–1465

    Article  CAS  Google Scholar 

  • El-Desoki W (2009) Influence of acidity and sodium chloride on the function properties of whey protein powder. World J Dairy Food Sci 4:150–153

    Google Scholar 

  • Fernandez-Quintela A, Macarulla MT, Del Barrio AS, Martinez JA (1997) Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain. Plant Foods Hum Nutr 51:331–342

    Article  CAS  PubMed  Google Scholar 

  • Finet S, Skouri-Panet F, Casselyn M et al (2004) The Hofmeister effect as seen by SAXS in protein solutions. Curr Opin Colloid Interface Sci 9:112–116

    Article  CAS  Google Scholar 

  • García-Fayos B, Arnal J, Verdú G, Rodrigo I (2010) Purification of a natural coagulant extracted from Moringa oleifera seeds: isolation and characterization of the active compound. In: International conference on food innovation

  • Gassenschmidt U, Jany KD, Tauscher B, Niebergall H (1995) Isolation and characterization of a flocculating protein from Moringa oleifera Lam. Biochem Biophys Acta 1243:477–481

    Article  PubMed  Google Scholar 

  • Govardhan SR, Ogunsina BS, Radha C (2011) Protein extractability from defatted Moringa oleifera Lam. seeds flour. Ife J Sci 13:121–127

    Google Scholar 

  • Guleria P, Kumar V, Guleria S (2017) Genetic engineering: a possible strategy for protein-energy malnutrition regulation. Mol Biotechnol. https://doi.org/10.1007/s12033-017-0033-8

    Article  PubMed  Google Scholar 

  • Hiai S, Oura H, Nakajima T (1976) Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Med 29:116–122

    Article  CAS  PubMed  Google Scholar 

  • Hofmeister F (1888) Zur Lehre von der Wirkung der Salze. Archiv für Experimentelle Pathologie und Pharmakologie 24:247–260

    Google Scholar 

  • Jain A, Prakash M, Radha C (2015) Extraction and evaluation of functional properties of groundnut protein concentrate. J Food Sci Technol 52:6655–6662. https://doi.org/10.1007/s13197-015-1758-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jerri HA, Adolfsen KJ, McCullough LR et al (2012) Antimicrobial sand via adsorption of cationic Moringa oleifera protein. Langmuir 28:2262–2268

    Article  CAS  PubMed  Google Scholar 

  • Kamara MT, Huiming Z, Kexue Z et al (2009) Comparative study of chemical composition and physicochemical properties of two varieties of defatted foxtail millet flour grown in China. Am J Food Technol 4:255–267

    Article  CAS  Google Scholar 

  • Kunz W (2010) Specific ion effects in colloidal and biological systems. Curr Opin Colloid Interface Sci 15:34–39

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Makkar HPS, Becker K (1997) Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree. J Agric Sci 128:311–322

    Article  Google Scholar 

  • Ndabigengesere A, Narasiah K, Talbot B (1995) Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Res 29:703–710

    Article  CAS  Google Scholar 

  • Pearce KN, Kinsella JE (1978) Emulsifying properties of proteins: evaluation of a turbidimetric technique. J Agric Food Chem 26:716–723

    Article  CAS  Google Scholar 

  • Salis A, Cugia F, Parsons DF et al (2012) Hofmeister series reversal for lysozyme by change in pH and salt concentration: insights from electrophoretic mobility measurements. Phys Chem Chem Phys 14:4343–4346

    Article  CAS  PubMed  Google Scholar 

  • Santos AFS, Luz LA, Argolo ACC et al (2009) Isolation of a seed coagulant Moringa oleifera lectin. Process Biochem 44:504–508

    Article  CAS  Google Scholar 

  • Sathe SK, Deshpande S, Salunkhe DK (1982) Functional properties of lupin seed (Lupinus mutabilis) proteins and protein concentrates. J Food Sci 47:491–497

    Article  CAS  Google Scholar 

  • Schwierz N, Horinek D, Netz RR (2010) Reversed anionic hofmeister series: the interplay of surface charge and surface polarity. Langmuir 26:7370–7379

    Article  CAS  PubMed  Google Scholar 

  • Shevkani K, Singh N, Kaur A, Rana JC (2015) Structural and functional characterization of kidney bean and field pea protein isolates: a comparative study. Food Hydrocoll 43:679–689. https://doi.org/10.1016/J.FOODHYD.2014.07.024

    Article  CAS  Google Scholar 

  • Slominski BA, Campbell LD (1989) Formation of indole glucosinolate breakdown products in autolyzed, steamed, and cooked brassica vegetables. J Agric Food Chem 37:1297–1302

    Article  CAS  Google Scholar 

  • Sridaran A, Karim AA, Bhat R (2012) Pithecellobium jiringa legume flour for potential food applications: studies on their physico-chemical and functional properties. Food Chem 130:528–535

    Article  CAS  Google Scholar 

  • Sze-Tao KWC, Sathe SK (2000) Functional properties and in vitro digestibility of almond (Prunus dulcis L.) protein isolate. Food Chem 69:153–160

    Article  CAS  Google Scholar 

  • Tomotake H, Shimaoka I, Kayashita J et al (2002) Physicochemical and functional properties of buckwheat protein product. J Agric Food Chem 50:2125–2129

    Article  CAS  PubMed  Google Scholar 

  • Triveni R, Shamala TR, Rastogi NK (2001) Optimised production and utilisation of exopolysaccharide from Agrobacterium radiobacter. Process Biochem 36:787–795

    Article  CAS  Google Scholar 

  • Wang JM, Xia N, Yang XQ et al (2012) Adsorption and dilatational rheology of heat-treated soy protein at the oil–water interface: relationship to structural properties. J Agric Food Chem 60:3302–3310

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Cremer PS (2009) The inverse and direct Hofmeister series for lysozyme. Proc Natl Acad Sci USA 106:15249–15253

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Li Y, Ren Y (2007) Research on the phosphorylation of soy protein isolate with sodium tripoly phosphate. J Food Eng 79:1233–1237

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-CFTRI, Mysore for extending facilities for this study. Department of Biotechnology, Government of India, New Delhi is duly acknowledged for the financial support in the form of grant-in-aid project to Dr. C. Radha, Sanction No. BT/Bio-CARe/05/400/2010-2011 dated 16-02-2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Radha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Subramanian, R., Manohar, B. et al. Preparation, characterization and functional properties of Moringa oleifera seed protein isolate. J Food Sci Technol 56, 2093–2104 (2019). https://doi.org/10.1007/s13197-019-03690-0

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-03690-0

Keywords

Navigation