Skip to main content
Log in

Honey authentication using rheological and physicochemical properties

  • Review Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the influence of honey botanical origins on rheological parameters. In order to achieve the correlation, fifty-one honey samples, of different botanical origins (acacia, polyfloral, sunflower, honeydew, and tilia), were investigated. The honey samples were analysed from physicochemical (moisture content, fructose, glucose and sucrose content) and rheological point of view (dynamic viscosity—loss modulus G″, elastic modulus G′, complex viscosity η*, shear storage compliance—J′ and shear loss compliance J″). The rheological properties were predicted using the Artificial Neural Networks based on moisture content, glucose, fructose and sucrose. The models which predict better the rheological parameters in function of fructose, glucose, sucrose and moisture content are: MLP-1 hidden layer is predicting the G, η* and J″, respectively, MLP-2 hidden layers the J, while MLP-3 hidden layers the G, respectively. The physicochemical and rheological parameters were submitted to statistical analysis as follows: Principal component analysis (PCA), Linear discriminant analysis (LDA) and Artificial neural network (ANN) in order to evaluate the usefulness of the parameters studied for honey authentication. The LDA was found the suitable method for honey botanical authentication, reaching a correct cross validation of 94.12% of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Mahasneh MA, Rababah TM, Amer M, Al-Omoush M (2014) Modeling physical and rheological behavior of minimally processed wild flowers honey. J Food Process Preserv 38(1):21–30

    Article  CAS  Google Scholar 

  • Anupama D, Bhat KK, Sapna VK (2003) Sensory and physico-chemical properties of commercial samples of honey. Food Res Int 36(2):183–191

    Article  CAS  Google Scholar 

  • Arrigoni E, Kast C, Walther B (2014) Effects of dietary sugars from natural sources on health outcomes. Dietary sugars and health. CRC Press, New York

    Google Scholar 

  • Atanassova J, Pavlova D, Lazarova M, Yurukova L (2016) Characteristics of honey from serpentine area in the Eastern Rhodopes Mt., Bulgaria. Biol Trace Elem Res 173(1):247–258

    Article  CAS  Google Scholar 

  • Bath PK, Singh N (1999) A comparison between Helianthus annuus and Eucalyptus lanceolatus honey. Food Chem 67(4):389–397

    Article  CAS  Google Scholar 

  • Belay A, Haki GD, Birringer M, Borck H, Addi A, Baye K, Melaku S (2017) Rheology and botanical origin of Ethiopian monofloral honey. LWT—Food Sci Technol 75:393–401

    Article  CAS  Google Scholar 

  • Biluca FC, de Gois JS, Schulz M, Braghini F, Gonzaga LV, Maltez HF, Costa ACO (2017) Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae). J Food Comp Anal 63:90–97

    Article  Google Scholar 

  • Boffo EF, Tavares LA, Tobias AC, Ferreira MM, Ferreira AG (2012) Identification of components of Brazilian honey by 1 H NMR and classification of its botanical origin by chemometric methods. LWT—Food Sci Technol 49(1):55–63

    Article  CAS  Google Scholar 

  • Bogdanov S, Martin P, Lullmann C (2002) Harmonised methods of the international honey commission. Swiss Bee Research Centre, FAM, Liebefeld

    Google Scholar 

  • Cohen I, Weihs D (2010) Rheology and microrheology of natural and reduced-calorie Israeli honeys as a model for high-viscosity Newtonian liquids. J Food Eng 100(2):366–371

    Article  Google Scholar 

  • Czipa N, Diósi G, Phillips C, Kovács B (2017) Examination of honeys and flowers as soil element indicators. Environ Monit Assess 189(8):412

    Article  Google Scholar 

  • de Sousa JMB, de Souza EL, Marques G, de Toledo Benassi M, Gullón B, Pintado MM, Magnani M (2016) Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT–Food Sci Tech 65:645–651

    Article  Google Scholar 

  • Escriche I, Kadar M, Juan-Borrás M, Domenech E (2011) Using flavonoids, phenolic compounds and headspace volatile profile for botanical authentication of lemon and orange honeys. Food Res Int 44(5):1504–1513

    Article  CAS  Google Scholar 

  • Escriche I, Kadar M, Juan-Borrás M, Domenech E (2014) Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food Chem 142:135–143

    Article  CAS  Google Scholar 

  • Escriche I, Oroian M, Visquert M, Gras ML, Vidal D (2016) Rheological properties of honey from burkina faso: loss modulus and complex viscosity modeling. Int J Food Prop 19(11):2575–2586

    Article  CAS  Google Scholar 

  • Escriche I, Tanleque-Alberto F, Visquert M, Oroian M (2017) Physicochemical and rheological characterization of honey from Mozambique. LWT–Food Sci Technol 86:108–115

    Article  CAS  Google Scholar 

  • Gok S, Severcan M, Goormaghtigh E, Kandemir I, Severcan F (2015) Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem 170:234–240

    Article  CAS  Google Scholar 

  • Isla MI, Craig A, Ordoñez R, Zampini C, Sayago J, Bedascarrasbure E, Maldonado L (2011) Physico chemical and bioactive properties of honeys from Northwestern Argentina. LWT–Food Sci Technol 44(9):1922–1930

    Article  CAS  Google Scholar 

  • Juan-Borrás M, Domenech E, Hellebrandova M, Escriche I (2014) Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys. Food Res Int 60:86–94

    Article  Google Scholar 

  • Juszczak L, Fortuna T (2006) Rheology of selected Polish honeys. J Food Eng 75(1):43–49

    Article  Google Scholar 

  • Kadri SM, Zaluski R, de Oliveira Orsi R (2017) Nutritional and mineral contents of honey extracted by centrifugation and pressed processes. Food Chem 218:237–241

    Article  CAS  Google Scholar 

  • Kaškonienė V, Venskutonis PR, Čeksterytė V (2010) Carbohydrate composition and electrical conductivity of different origin honeys from Lithuania. LWT–Food Sci Technol 43(5):801–807

    Article  Google Scholar 

  • Kaygusuz H, Tezcan F, Erim FB, Yildiz O, Sahin H, Can Z, Kolayli S (2016) Characterization of Anatolian honeys based on minerals, bioactive components and principal component analysis. LWT-Food Sci Tech 68:273–279

    Article  CAS  Google Scholar 

  • Kuś PM, van Ruth S (2015) Discrimination of Polish unifloral honeys using overall PTR-MS and HPLC fingerprints combined with chemometrics. LWT–Food Sci Technol 62(1):69–75

    Article  Google Scholar 

  • Lachman J, Orsák M, Hejtmánková A, Kovářová E (2010) Evaluation of antioxidant activity and total phenolics of selected Czech honeys. LWT-Food Sci Tech 43(1):52–58

    Article  CAS  Google Scholar 

  • Manzanares AB, García ZH, Galdón BR, Rodríguez ER, Romero CD (2014) Physicochemical characteristics of minor monofloral honeys from Tenerife, Spain. LWT–Food Sci Technol 55(2):572–578

    Article  Google Scholar 

  • Mehaya FM, Kamil MM, Ashoush IS, Khalil HI (2015) Fourier transform infrared spectroscopy technique for detection of honey authentication. Arab Uni J Agri Sci 23(2):549–561

    Google Scholar 

  • Nayik GA, Dar BN, Nanda V (2016) Rheological behavior of high altitude Indian honey varieties as affected by temperature. J Saudi Soc Agri Sci. https://doi.org/10.1016/j.jssas.2016.07.003

    Article  Google Scholar 

  • Oddo LP, Piro R, Bruneau É, Guyot-Declerck C, Ivanov T, Piskulová J, Von der Ohe W (2004) Main European unifloral honeys: descriptive sheets. Apidologie 35:38–81

    Article  Google Scholar 

  • Oroian M (2012) Physicochemical and rheological properties of Romanian honeys. Food Biophy 7(4):296–307

    Article  Google Scholar 

  • Oroian M (2015) Influence of temperature, frequency and moisture content on honey viscoelastic parameters–Neural networks and adaptive neuro-fuzzy inference system prediction. LWT–Food Sci Technol 63(2):1309–1316

    Article  CAS  Google Scholar 

  • Oroian M, Ropciuc S (2017) Honey authentication based on physicochemical parameters and phenolic compounds. Comput Electron Agr 138:148–156

    Article  Google Scholar 

  • Oroian M, Amariei S, Escriche I, Gutt G (2013a) Rheological aspects of Spanish honeys. Food Bioprocess Technol 6(1):228–241

    Article  Google Scholar 

  • Oroian M, Amariei S, Escriche I, Gutt G (2013b) A viscoelastic model for honeys using the time–temperature Superposition Principle (TTSP). Food Bioprocess Technol 6(9):2251–2260

    Article  Google Scholar 

  • Oroian M, Amariei S, Rosu A, Gutt G (2015a) Classification of unifloral honeys using multivariate analysis. J Essent Oil Res 27(6):533–544

    Article  CAS  Google Scholar 

  • Oroian M, Amariei S, Leahu A, Gutt G (2015b) Multi-element composition of honey as a suitable tool for its authenticity analysis. Pol J Food Nutri Sci 65(2):93–100

    CAS  Google Scholar 

  • Oroian M, Ropciuc S, Buculei A (2017) Romanian honey authentication based on physico-chemical parameters and chemometrics. J Food Measur Charac 11(2):719–725

    Article  Google Scholar 

  • Osés SM, Ruiz MO, Pascual-Maté A, Bocos A, Fernández-Muiño MÁ, Sancho MT (2017) Ling heather honey authentication by thixotropic parameters. Food Bioprocess Technol 10(5):973–979

    Article  Google Scholar 

  • Popek S, Halagarda M, Kursa K (2017) A new model to identify botanical origin of Polish honeys based on the physicochemical parameters and chemometric analysis. LWT–Food Sci Technol 77:482–487

    Article  CAS  Google Scholar 

  • Prosser SW, Hebert PD (2017) Rapid identification of the botanical and entomological sources of honey using DNA metabarcoding. Food Chem 214:183–191

    Article  CAS  Google Scholar 

  • Ramzi M, Kashaninejad M, Salehi F, Mahoonak ARS, Razavi SMA (2015) Modeling of rheological behavior of honey using genetic algorithm–artificial neural network and adaptive neuro-fuzzy inference system. Food Biosci 9:60–67

    Article  Google Scholar 

  • Siddiqui AJ, Musharraf SG, Choudhary MI (2017) Application of analytical methods in authentication and adulteration of honey. Food Chem 217:687–698

    Article  CAS  Google Scholar 

  • Singh N, Bath PK (1997) Quality evaluation of different types of Indian honey. Food Chem 58(1):129–133

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant of the National Council for Higher Education Funding, CNFIS, project number CNFIS-FDI-2018-058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Oroian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oroian, M., Ropciuc, S. & Paduret, S. Honey authentication using rheological and physicochemical properties. J Food Sci Technol 55, 4711–4718 (2018). https://doi.org/10.1007/s13197-018-3415-4

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-018-3415-4

Keywords

Navigation