Skip to main content
Log in

Optimization of spray drying process parameters for tucupi powder using the response surface methodology

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

A completely randomized 23 factorial experimental design was used to optimize the process parameters for obtaining tucupi powder through spray drying. The effects of the process variables [inlet air temperature (IT), feed flow rate (FR), and maltodextrin concentration (MD)] on the product properties [moisture, water activity (aw), hygroscopicity, water absorption index (WAI), water solubility index (WSI), total color difference (ΔE*), and β-carotene content] were studied using the response surface methodology (RSM) and linear perturbation plot. In addition, scanning electron microscopy (SEM) images were obtained of the product. According to ANOVA and the regression coefficients (R2 > 0.90), the RSM models were significant and IT was the variable with the greatest impact on most of the responses. SEM shows that the powders obtained with higher IT and MD and lower FR were more uniform, with smooth and intact surfaces. The optimal conditions estimated for the process were IT at 214 °C, FR at 8.67 mL/min, and MD at 27%. Under those conditions, the product’s minimum values of moisture (9.56 g/100 g), aw (0.101), hygroscopicity (37.45% d.b.), and ΔE* (17.05) and maximum values of WAI (6.68 g/g d.b.), WSI (84.77%), and β-carotene (13.72 µg/g) were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhikari B, Howes T, Bhandari BR, Troung V (2003) Characterization of the surface stickiness of fructose–maltodextrin solutions during drying. Dry Technol 21(1):17–34. doi:10.1081/DRT-120017281

    Article  CAS  Google Scholar 

  • Adhikari B, Howes T, Bhandari BR, Troung V (2004) Effect of addition of maltodextrin on drying kinetics and tackiness of sugar and acid-rich foods during convective drying: experiments and modelling. J Food Eng 62(1):53–68. doi:10.1016/S0260-8774(03)00171-7

    Article  Google Scholar 

  • Anderson RA, Conway HF, Pfeifer VF, Griffin EL Jr (1969) Gelatinization of corn grits by roll and extrusion cooking. Cereal Sci Today 14(1):4–12

    Google Scholar 

  • AOAC (1997) Official methods of analysis of the Association of Official Analytical Chemist. Washington

  • Augusto-Ruiz W, Bonato S, Arrieche L, Risso F (2003) Characterization of pregelatinized whole rice flour produced from broken rice grains. Rev Ciênc Exatas Eng 13(8):25–46

    Google Scholar 

  • Balasubramani P, Viswanathan R, Vairamani M (2013) Response surface optimization of process variables for microencapsulation of garlic (Allium sativum L.) oleoresin by spray drying. Biosyst Eng 114(3):205–213. doi:10.1016/j.biosystemseng.2012.12.008

    Article  Google Scholar 

  • Barbosa-Cánovas GV, Juliano P (2005) Physical and chemical properties of food powders. In: Onwulata C (ed) Encapsulated and powdered foods. Taylor & Francis, New York, pp 39–71

    Chapter  Google Scholar 

  • Bas D, Boyaci IH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78(3):836–845. doi:10.1016/j.jfoodeng.2005.11.024

    Article  CAS  Google Scholar 

  • Bhandari BR, Hartel RW (2005) Phase transitions during food powder production and powder stability. In: Onwulata C (ed) Encapsulated and powdered foods. Taylor & Francis, New York, pp 261–292

    Chapter  Google Scholar 

  • Cai YZ, Corke H (2000) Production and properties of spray-dried Amaranthus betacyanin pigments. J Food Sci 65(7):1248–1252. doi:10.1111/j.1365-2621.2000.tb10273.x

    Article  CAS  Google Scholar 

  • Cassoni V, Cereda MP (2011) Cassava wastewater acetic fermentation process’ evaluation. Rev Energy Agric 26(4):101–113. doi:10.17224/EnergAgric.2011v26n4p101-113

    Google Scholar 

  • Chegini RG, Ghobadian B (2005) Effect of spray-drying conditions on physical properties of orange juice powder. Dry Technol 23(3):657–668. doi:10.1081/DRT-200054161

    Article  CAS  Google Scholar 

  • Chen Q, Bi J, Zhou Y, Liu X, Wu X, Chen R (2014) Multi-objective optimization of spray drying of jujube (Zizyphus jujuba Miller) powder using response surface methodology. Food Bioprocess Technol 7(6):1807–1818. doi:10.1007/s11947-013-1171-z

    Article  CAS  Google Scholar 

  • Chisté RC, Cohen KO (2011) Total and free cyanide contents determination during the processing steps for preparing tucupi. Rev Inst Adolfo Lutz 70(1):41–46

    Google Scholar 

  • Desai KGH, Park HJ (2005) Recent developments in microencapsulation of food ingredients. Dry Technol 23(7):1361–1394. doi:10.1081/DRT-200063478

    Article  CAS  Google Scholar 

  • Fennema OR (1996) Food chemistry. Marcel Dekker, New York

    Google Scholar 

  • Goula AM, Adamopoulos KG (2010) A new technique for spray drying Orange juice concentrate. Innov Food Sci Emerg Technol 11(1):342–351. doi:10.1016/j.ifset.2009.12.001

    Article  CAS  Google Scholar 

  • Granato D, Calado VMA (2014) The use and importance of design of experiments (DOE) in process modelling in food science and technology. In: Granato D, Calado VMA (eds) Mathematical and statistical methods in food science and technology, 1st edn. Wiley, Blackwell, New York, pp 1–18

    Chapter  Google Scholar 

  • Homma AKO, Santos JC, Sena ALS, Menezes AJEA (2014) Smallholder production in the Amazon: conflicts and opportunities, which ways? Amaz Ciênc Desenvolv 9(18):137–154

    Google Scholar 

  • Jaya S, Das H (2004) Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powders properties. J Food Eng 63(2):125–134. doi:10.1016/S0260-8774(03)00135-3

    Article  Google Scholar 

  • Jaya S, Das H (2009) Glass transition and tacky point temperature and stability/mobility diagram of fruits powder. Food Bioprocess Technol 2(1):1–7. doi:10.1007/s11947-007-0047-5

    Article  Google Scholar 

  • Kha TC, Nguyen MH, Roach PD (2010) Effect of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. J Food Eng 98(3):385–392. doi:10.1016/j.jfoodeng.2010.01.016

    Article  CAS  Google Scholar 

  • Kudra T (2003) Tacky region in drying—definition and identification. Dry Technol 21(8):1457–1469. doi:10.1081/DRT-120024678

    Article  Google Scholar 

  • Kurozawa LE, Morassi AG, Vanzo AA, Park KJ, Hubinger MD (2009) Influence of spray drying conditions on physicochemical properties of chicken meat powder. Dry Technol 27(11):1248–1257. doi:10.1080/07373930903267187

    Article  CAS  Google Scholar 

  • León K, Mery D, Pedreschi F, León J (2006) Color measurement in L* a* b* units from RGB digital images. Food Res Int 39(10):1084–1091. doi:10.1016/j.foodres.2006.03.006

    Article  Google Scholar 

  • Marques GR, Borges SV, Botrel DA, Costa JMG, Silva EK, Corrêa JLG (2014a) Spray drying of green corn pulp. Dry Technol 32(7):861–868. doi:10.1080/07373937.2013.873452

    Article  CAS  Google Scholar 

  • Marques GR, Borges SV, Mendonça KS, Fernandes RVB, Menezes EGT (2014b) Application of maltodextrin in green corn extract powder production. Powder Technol 263:89–95. doi:10.1016/j.powtec.2014.05.001

    Article  CAS  Google Scholar 

  • Montgomery DC (2001) Desing and analysis of experiments. Wiley, New York

    Google Scholar 

  • Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments. Wiley, New York

    Google Scholar 

  • Nelson DL, Cox MM (2012) Lehninger—principles of biochemistry. Freeman, New York

    Google Scholar 

  • Noordin MY, Venkatesh VV, Sharif S, Elting S, Abdullah A (2004) Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J Mater Process Technol 145(1):46–58. doi:10.1016/S0924-0136(03)00861-6

    Article  CAS  Google Scholar 

  • Obon JM, Castellar MR, Alacid M, Fernández-López JA (2009) Production of a red–purple food colorant from Opuntia stricta fruits by spray drying and its application in food model systems. J Food Eng 90(4):471–479. doi:10.1016/j.jfoodeng.2008.07.013

    Article  Google Scholar 

  • Quek SY, Chok NK, Swedlund P (2007) The physicochemical properties of spray-dried watermelon powders. Chem Eng Process 46(5):386–392. doi:10.1016/j.cep.2006.06.020

    Article  CAS  Google Scholar 

  • Rascón MP, Beristain C, Garcia H, Salgado M (2011) Carotenoid retention and storage stability of spray-dried encapsulated paprika oleoresin using gum Arabic and Soy protein isolate as wall materials. Food Sci Technol 44(2):549–557. doi:10.1016/j.lwt.2010.08.021

    Google Scholar 

  • Ré M (1998) Microencapsulation by spray drying. Dry Technol 16(6):1195–1236. doi:10.1080/07373939808917460

    Article  Google Scholar 

  • Rodriguez-Amaya DB, Kimura M (2004) Harvestplus handbook for carotenoid analysis. Washington

  • Rodríguez-Jimenes GC, Páramo-Calderón DE, Wall-Martínez HA, Robles-Olvera VJ, Valerio-Alfaro G, García-Alvarado MA (2014) Effect of process variables on spray-dried garlic juice quality evaluated by multivariate statistic. Food Bioprocess Technol 7(8):2434–2442. doi:10.1007/s11947-014-1311-0

    Article  Google Scholar 

  • Sagar VR, Suresh Kumar P (2010) Recent advances in drying and dehydration of fruits and vegetables: a a review. J Food Sci Technol 47(1):15–26. doi:10.1007/s13197-010-0010-8

    Article  CAS  Google Scholar 

  • Tonon RV, Brabet C, Hubinger MD (2009) Influence of drying air temperature and carrier agent concentration on the physicochemical properties of açai juice powder. Ciênc Technol Aliment 29(2):444–450. doi:10.1590/S0101-20612009000200034

    Article  Google Scholar 

  • Yousefi S, Emam-Djomeh Z, Mousavi MS (2011) Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.). J Food Sci Technol 48(6):677–684. doi:10.1007/s13197-010-0195-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support (473898/2012-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosinelson da Silva Pena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires, F.C.S., da Silva Pena, R. Optimization of spray drying process parameters for tucupi powder using the response surface methodology. J Food Sci Technol 54, 3459–3472 (2017). https://doi.org/10.1007/s13197-017-2803-5

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2803-5

Keywords

Navigation