Skip to main content
Log in

Distribution of phenolic compounds and antioxidant capacity in apples tissues during ripening

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The effect of variety and ripening stage on the distribution of phenolic compounds and in vitro antioxidant capacity of Gala, Fuji Suprema and Eva apples were evaluated. Hydroxycinnamic acids, flavonoids, flavanols, flavonols, dihydrochalcones and antioxidant activity (FRAP and DPPH) were assessed in the epicarp, mesocarp and endocarp of three varieties at three ripening stages (unripe, ripe and senescent). The Fuji Suprema variety distinguished by its content of flavonols at senescent stage, while Eva variety distinguished by its content of dihydrochalcones (unripe stage) and anthocyanins (ripe stage). In general, phenolic acids and flavonoids decreased with ripening in the epicarp and endocarp. However, in the mesocarp, the effect of ripening was related with the apple variety. Hierarchical cluster analysis confirmed the influence of ripening in the apple tissue. The evolution of these compounds during ripening occurred irregularly and it was influenced by the variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alberti A, Zielinski AAF, Zardo DM, Demiate IM, Nogueira A, Mafra LI (2014) Optimisation of the extraction of phenolic compounds from apples using response surface methodology. Food Chem 149:151–158. doi:10.1016/j.foodchem.2013.10.086

    Article  CAS  Google Scholar 

  • Alberti A, Santos TPM, Zielinski AAF, Santos CME, Braga CM, Demiate IM, Nogueira A (2016) Impact on chemical profile in apple juice and cider made from unripe, ripe and senescent dessert varieties. LWT Food Sci Technol 65:436–443. doi:10.1016/j.lwt.2015.08.045

    Article  CAS  Google Scholar 

  • Alonso-Salces RM, Barranco A, Abad B, Berrueta LA, Gallo B, Vicente F (2004) Polyphenolic profiles of basque cider apple cultivars and their technological properties. J Agric Food Chem 52(10):2938–2952. doi:10.1021/jf035416l

    Article  CAS  Google Scholar 

  • Apak R, Özyürek M, Güçlü K, Çapanoğlu E (2016) Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem 64(5):997–1027. doi:10.1021/acs.jafc.5b04739

    Article  CAS  Google Scholar 

  • Babu PVA, Liu D, Gilbert ER (2013) Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem 24:1777–1789. doi:10.1016/j.jnutbio.2013.06.003

    Article  CAS  Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76. doi:10.1006/abio.1996.0292

    Article  CAS  Google Scholar 

  • Bidel LPR, Coumans M, Baissac Y, Doumas P, Jay-Allemand C (2011) Biological activity of phenolics in plant Cells. In: Santos-Buelga C, Escribano-Bailon MT, Lattanzio V (eds) Recent advances in polyphenol research, vol 2. Wiley, New York, pp 163–205

    Google Scholar 

  • Blanpied GD, Silsby KJ (1992) Predicting harvest date windows for apples. Cornell cooperative extension information bulletin 221, Ithaca. http://www.plant.uoguelph.ca/treefruit/documents/PredictingHarvestDate.pdf. Accessed 25 Nov 2012

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30. doi:10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  • Broadhurst RB, Jones WT (1978) Analysis of condensed tannins using acidified vanillin. J Sci Food Agric 29:788–794

    Article  CAS  Google Scholar 

  • Duda-Chodak A, Tarko T, Tuszyński T (2011) Antioxidant activity of apples—an impact of maturity stage and fruit part. Acta Sci Pol Technol Aliment 10:443–454

    CAS  Google Scholar 

  • Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L (2005) Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. Biochim Biophys Acta 1721(1–3):174–184. doi:10.1016/j.bbagen.2004.11.001

    Article  CAS  Google Scholar 

  • Gosch C, Halbwirth H, Stich K (2010) Phloridzin: biosynthesis, distribution and physiological relevance in plants. Phytochemistry 71:838–843. doi:10.1016/j.phytochem.2010.03.003

    Article  CAS  Google Scholar 

  • Guo J, Yue T, Yuan Y, Wang Y (2013) Chemometric classification of apple juices according to variety and geographical origin based on polyphenolic profiles. J Agric Food Chem 61(28):6949–6963. doi:10.1021/jf4011774

    Article  CAS  Google Scholar 

  • Guyot S, Serrand S, Le Quéré JM, Sanoner P, Renard CMGC (2007) Enzymatic synthesis and physicochemical characterisation of phloridzin oxidation products (POP), a new water-soluble yellow dye deriving from apple. Innov Food Sci Emerg Technol 8(3):443–450. doi:10.1016/j.ifset.2007.03.021

    Article  CAS  Google Scholar 

  • Huber GM, Rupasinghe HPV (2009) Phenolic profiles and antioxidant properties of apple skin extracts. J Food Sci 74(9):C693–C700. doi:10.1111/j.1750-3841.2009.01356.x

    Article  CAS  Google Scholar 

  • Ignat I, Volf I, Popa VI (2011) A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem 126:1821–1835. doi:10.1016/j.foodchem.2010.12.026

    Article  CAS  Google Scholar 

  • Jaworski AW, Lee CY (1987) Fractionation and HPLC determination of grape phenolics. J Agric Food Chem 35:257–259

    Article  CAS  Google Scholar 

  • Kalinowska M, Bielawska A, Lewandowska-Siwkiewicz H, Priebe W, Lewandowski W (2014) Apples: content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiol Bioch 84:169–188. doi:10.1016/j.plaphy.2014.09.006

    Article  CAS  Google Scholar 

  • Karaman S, Tütem E, Sözgen Baskan K, Apak R (2010) Comparison of total antioxidant capacity and phenolic composition of some apple juices with combined HPLC-CUPRAC assay. Food Chem 120(4):1201–1209. doi:10.1016/j.foodchem.2009.11.065

    Article  CAS  Google Scholar 

  • Khanizadeh S, Tsao R, Rekika D, Yang R, Charles MT, Rupasinghe HPV (2008) Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. J Food Compos Anal 21(5):396–401. doi:10.1016/j.jfca.2008.03.004

    Article  CAS  Google Scholar 

  • Le Bourvellec C, Bureau S, Renard CMGC, Plenet D, Gautier H, Touloumet L, Girard T, Simon S (2015) Cultivar and year rather than agricultural practices affect primary and secondary metabolites in apple fruit. PLoS ONE 10(11):1–23. doi:10.1371/journal.pone.0141916

    Article  Google Scholar 

  • Masumoto S, Akimoto Y, Oike H, Kobori M (2009) Dietary phloridzin reduces blood glucose levels and reverses sglt1 expression in the small intestine in streptozotocin-induced diabetic mice. J Agric Food Chem 57(11):4651–4656. doi:10.1021/jf9008197

    Article  CAS  Google Scholar 

  • Sanoner P, Guyot S, Marnet N, Molle D, Drilleau J-F (1999) Polyphenol profiles of french cider apple varieties (Malus domestica sp.). J Agric Food Chem 47(12):4847–4853. doi:10.1021/jf990563y

    Article  CAS  Google Scholar 

  • Singleton V, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Solovchenko AE, Merzlyak MN (2008) Screening of visible and UV radiation as a photoprotective mechanism in plants. Russ J Plant Physiol 55(6):719–737. doi:10.1134/S1021443708060010

    Article  CAS  Google Scholar 

  • Tsao R, Yang R, Young JC, Zhu H (2003) Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J Agric Food Chem 51(21):6347–6353. doi:10.1021/jf0346298

    Article  CAS  Google Scholar 

  • Tsao R, Yang R, Xie S, Sockovie E, Khanizadeh S (2005) Which polyphenolic compounds contribute to the total antioxidant activities of apple? J Agric Food Chem 53(12):4989–4995. doi:10.1021/jf048289h

    Article  CAS  Google Scholar 

  • Vidal S, Francis L, Guyot S, Marnet N, Kwiatkowski M, Gawel R, Cheynier V, Waters EJ (2003) The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. J Sci Food Agric 83(6):564–573. doi:10.1002/jsfa.1394

    Article  CAS  Google Scholar 

  • Yao LH, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, Singanusong R, Chen SS (2004) Flavonoids in food and their health benefits. Plant Food Hum Nutr 59:113–122. doi:10.1007/s11130-004-0049-7

    Article  CAS  Google Scholar 

  • Zardo DM, Silva KM, Guyot S, Nogueira A (2013) Phenolic profile and antioxidant capacity of the principal apples produced in Brazil. Int J Food Sci Nutr 64(5):611–620. doi:10.3109/09637486.2013.763909

    Article  CAS  Google Scholar 

  • Zhang Y, Li P, Cheng L (2010) Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’ apple flesh. Food Chem 123(4):1013–1018. doi:10.1016/j.foodchem.2010.05.053

    Article  CAS  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64(4):555–559. doi:10.1016/S0308-8146(98)00102-2

    Article  CAS  Google Scholar 

  • Zielinski AAF, Alberti A, Braga CM, Silva KM, Canteri MHG, Mafra LI, Granato D, Nogueira A, Wosiacki G (2014) Effect of mash maceration and ripening stage of apples on phenolic compounds and antioxidant power of cloudy juices: a study using chemometrics. LWT Food Sci Technol 57(1):223–229. doi:10.1016/j.lwt.2014.01.02

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Council for Scientific and Technological Development (CNPq; Grant No. 310425/2013-1), the Araucaria Foundation (FA; Grant No. 227/2014), and the Coordination for the Improvement of Personnel in Higher Level (CAPES) for financial support and scholarships (CAPES/PNPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Alberti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberti, A., Zielinski, A.A.F., Couto, M. et al. Distribution of phenolic compounds and antioxidant capacity in apples tissues during ripening. J Food Sci Technol 54, 1511–1518 (2017). https://doi.org/10.1007/s13197-017-2582-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2582-z

Keywords

Navigation