Skip to main content
Log in

Lactic acid as potential substitute of acetic acid for dissolution of chitosan: preharvest application to Butterhead lettuce

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Chitosan must be dissolved in acid solution to activate its antimicrobial properties. The objectives of present study were to determine whether acetic and lactic acids used to dissolve chitosan would influence its effectiveness to control the native microflora of Butterhead lettuce at harvest and during postharvest storage (7–8 °C, 5 days). Chitosan was applied as a SINGLE DOSE (14, 10, 7, 3 or 0 days previous to harvest) or in SUCCESSIVE DOSES (at 14 + 10 + 7+3 + 0 days prior to harvest). Although chitosan in acetic acid showed antimicrobial activity, treated plants showed dried brown stains which significantly reduced sensorial quality. Chitosan in lactic acid applied in a SINGLE DOSE at harvest or in SUCCESSIVE DOSES reduced microbial counts of all populations at harvest without affecting sensorial quality. After postharvest storage, lettuce treated with SUCCESSIVE APPLICATIONS of chitosan in lactic acid presented significant reductions in the microbial populations compared with untreated sample (−2.02 log in yeast and molds, −1.83 log in total coliforms, −1.4 log CFU g−1 in mesophilic bacteria and −1.1 log in psychrophilic bacteria). In conclusion, replacement of acetic by lactic acid did not affect the antimicrobial activity of chitosan, reducing microbial counts at harvest and after postharvest storage without affecting sensorial quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Badawy MEI, Rabea EI (2009) Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biol Technol 51:110–117. doi:10.1016/j.postharvbio.2008.05.018

    Article  CAS  Google Scholar 

  • Bautista-Baños S, Hernández-Lauzardo AN, Velázquez-del Valle MG, Hernández-López M, Ait Barka E, Bosquez-Molina E, Wilson CL (2006) Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot 25:108–118. doi:10.1016/j.cropro.2005.03.010

    Article  Google Scholar 

  • Beuchat LR (2002) Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes Infect 4:413–423

    Article  Google Scholar 

  • Biji K, Ravishankar C, Mohan C, Gopal TS (2015) Smart packaging systems for food applications: a review. J Food Sci Technol 52:6125–6135

    Article  CAS  Google Scholar 

  • Choi M-R, Lee S-Y, Park K-H, Chung M-S, Ryu S, Kang D-H (2012) Effect of aerosolized malic acid against Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157: H7 on spinach and lettuce. Food Control 24:171–176

    Article  CAS  Google Scholar 

  • Conner DE, Kotrola JS (1995) Growth and survival of Escherichia coli O157: H7 under acidic conditions. Appl Environ Microbiol 61:382–385

    CAS  Google Scholar 

  • Devlieghere F, Vermeiren L, Debevere J (2004) New preservation technologies: possibilities and limitations. Int Dairy J 14:273–285

    Article  Google Scholar 

  • Dong H, Cheng L, Tan J, Zheng K, Jiang Y (2004) Effects of chitosan coating on quality and shelf life of peeled litchi fruit. J Food Eng 64:355–358

    Article  Google Scholar 

  • Edirisinghe M, Ali A, Maqbool M, Alderson PG (2014) Chitosan controls postharvest anthracnose in bell pepper by activating defense-related enzymes. J Food Sci Technol 51:4078–4083

    Article  CAS  Google Scholar 

  • Fernandes JC, Tavaria FK, Soares JC, Ramos ÓS, João Monteiro M, Pintado ME, Xavier Malcata F (2008) Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol 25:922–928

    Article  CAS  Google Scholar 

  • Gol NB, Chaudhari ML, Rao TR (2015) Effect of edible coatings on quality and shelf life of carambola (Averrhoa carambola L.) fruit during storage. J Food Sci Technol 52:78–91

    Article  CAS  Google Scholar 

  • Goñi MG, AGUeERO MV, Moreira MDR, Ponce A, Roura SI (2010) Ring characterization of quality indices in butterhead lettuce cultivated under mulch and bare soil. J Food Qual 33:439–460

    Article  Google Scholar 

  • Goñi M, Moreira M, Viacava G, Roura S (2013a) Optimization of chitosan treatments for managing microflora in lettuce seeds without affecting germination. Carbohydr Polym 92:817–823

    Article  Google Scholar 

  • Goñi M, Tomadoni B, Moreira M, Roura S (2013b) Application of tea tree and clove essential oil on late development stages of Butterhead lettuce: impact on microbiological quality LWT-Food. Sci Technol 54:107–113

    Google Scholar 

  • Huang Y, Chen H (2011) Effect of organic acids, hydrogen peroxide and mild heat on inactivation of Escherichia coli O157: H7 on baby spinach. Food Control 22:1178–1183

    Article  CAS  Google Scholar 

  • Kim KM, Son JH, Kim SK, Weller CL, Hanna MA (2006) Properties of chitosan films as a function of pH and solvent type. J Food Sci 71:E119–E124

    Article  CAS  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  Google Scholar 

  • Lee S-Y, Yun K-M, Fellman J, Kang D-H (2002) Inhibition of Salmonella Typhimurium and Listeria monocytogenes in mung bean sprouts by chemical treatment. J Food Prot® 65:1088–1092

    Article  CAS  Google Scholar 

  • Lee S-Y, Costello M, Kang D-H (2004) Efficacy of chlorine dioxide gas as a sanitizer of lettuce leaves. J Food Prot® 67:1371–1376

    Article  CAS  Google Scholar 

  • Liu N, Chen X-G, Park H-J, Liu C-G, Liu C-S, Meng X-H, Yu L-J (2006) Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr Polym 64:60–65

    Article  CAS  Google Scholar 

  • Meng X, Li B, Liu J, Tian S (2008) Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chem 106:501–508

    Article  CAS  Google Scholar 

  • Mohammadi A, Hashemi M, Hosseini S (2015) The control of Botrytis fruit rot in strawberry using combined treatments of Chitosan with Zataria multiflora or Cinnamomum zeylanicum essential oil. J Food Sci Technol 52:7441–7448

    Article  CAS  Google Scholar 

  • Naknean P, Jutasukosol K, Mankit T (2015) Utilization of chitosan as an antimicrobial agent for pasteurized palm sap (Borassus flabellifer Linn.) during storage. J Food Sci Technol 52:731–741

    Article  CAS  Google Scholar 

  • No HK, Park NY, Lee SH, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65–72

    Article  CAS  Google Scholar 

  • Olaimat AN, Holley RA (2012) Factors influencing the microbial safety of fresh produce: a review. Food Microbiol 32:1–19

    Article  CAS  Google Scholar 

  • Ponce A, Agüero M, Roura S, Del Valle C, Moreira M (2008) Dynamics of indigenous microbial populations of butterhead lettuce grown in mulch and on bare soil. J Food Sci 73:M257–M263

    Article  CAS  Google Scholar 

  • Rinaudo M, Pavlov G, Desbrieres J (1999) Influence of acetic acid concentration on the solubilization of chitosan. Polymer 40:7029–7032

    Article  CAS  Google Scholar 

  • Romanazzi G, Gabler FM, Margosan D, Mackey BE, Smilanick JL (2009) Effect of chitosan dissolved in different acids on its ability to control postharvest gray mold of table grape. Phytopathology 99:1028–1036

    Article  CAS  Google Scholar 

  • SAS INC (2002) SAS software, Version 9.0 of the SAS System for Windows. SAS Institute Inc., Cary, NC, USA

  • Toan NV, Hanh TT, Thien PVM (2013) Antibacterial activity of chitosan on some common food contaminating microbes. Open Biomater J 4:1–5

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANCyT) and Universidad Nacional de Mar del Plata (UNMDP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Gabriela Goñi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goñi, M.G., Tomadoni, B., Roura, S.I. et al. Lactic acid as potential substitute of acetic acid for dissolution of chitosan: preharvest application to Butterhead lettuce. J Food Sci Technol 54, 620–626 (2017). https://doi.org/10.1007/s13197-016-2484-5

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-016-2484-5

Keywords

Navigation