Skip to main content
Log in

Functional properties and structure changes of soybean protein isolate after subcritical water treatment

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Subcritical water is an emerging method in food industry. In this study, soybean protein isolate (SPI) was treated by subcritical water (SBW) at various temperatures (0, 120, 160, 200 °C) for 20 min. The changes in the appearances, physicochemical properties and structural changes were investigated. After SBW treatment, the color of SPI solution modified turned to be yellow. The mean particle size and turbidity of SPI had similar behaviors. The mean particle size was decreased from 263.7 nm to 116.8 nm at 120 °C and then reached the maximum at 160 °C (1446.1 nm) due to the aggregation of protein. Then it was decreased to 722.9 nm at 200 °C caused by the protein degradation. SBW treatment could significantly enhance the solubility, emulsifying and foaming properties of SPI. With increasing temperature, the crystalline structure of protein was gradually collapsed. The degradation of the protein advanced structure occurred, especially at 200 °C revealed by ultra-high resolution mass spectrometry. Better functional properties exhibited in hydrolysis products indicating that SBW treatment could be used as a good method to modify the properties of soy proteins isolate for specific purposes under appropriate treatment condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adje EY, Balti R, Kouach M, Dhulster P, Guillochon D, Nedjar-Arroume N (2011) Obtaining antimicrobial peptides by controlled peptic hydrolysis of bovine hemoglobin. Int J Biol Macromol 49(2):143–153. doi:10.1016/j.ijbiomac.2011.04.004

    Article  CAS  Google Scholar 

  • Amarowicz R (2010) Modification of emulsifying properties of food proteins by enzymatic hydrolysis. Eur J Lipid Sci Tech 112 (7):695–696. doi: DOI 10.1002/ejlt.201000382

  • Carbonaro M, Nucara A (2010) Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids 38(3):679–690. doi:10.1007/s00726-009-0274-3

    Article  CAS  Google Scholar 

  • Chen L, Chen J, Ren J, Zhao M (2011) Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties. Food Hydrocolloid 25(5):887–897. doi:10.1016/j.foodhyd.2010.08.013

    Article  CAS  Google Scholar 

  • Chen J, Liang R-H, Liu W, Liu C-M, Li T, Tu Z-C, Wan J (2012) Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism. Food Hydrocolloids 28 (1):121–129. doi.org/10.1016/j.foodhyd.2011.12.018

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Sci Signal 312(5771):212–217. doi:10.1126/science.1124619

    CAS  Google Scholar 

  • Espinoza AD, Morawicki RO (2012) Effect of Additives on Subcritical Water Hydrolysis of Whey Protein Isolate. J Agr Food Chem 60(20):5250–5256. doi:10.1021/jf300581r

    Article  CAS  Google Scholar 

  • Espinoza AD, Morawicki RO, Hager T (2012) Hydrolysis of whey protein isolate using subcritical water. J Food Sci 77(1):C20–C26. doi:10.1111/j.1750-3841.2011.02462.x

    Article  CAS  Google Scholar 

  • Hassas-Roudsari M, Chang PR, Pegg RB, Tyler RT (2009) Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction. Food Chem 114(2):717–726. doi:10.1016/j.foodchem.2008.09.097

    Article  CAS  Google Scholar 

  • Hua Y, Cui SW, Wang Q, Mine Y, Poysa V (2005) Heat induced gelling properties of soy protein isolates prepared from different defatted soybean flours. Food Res Int 38(4):377–385. doi:10.1016/j.foodres.2004.10.006

    Article  CAS  Google Scholar 

  • Jambrak AR, Lelas V, Mason TJ, Krešić G, Badanjak M (2009) Physical properties of ultrasound treated soy proteins. J Food Eng 93(4):386–393. doi:10.1016/j.jfoodeng.2009.02.001

    Article  CAS  Google Scholar 

  • Khuwijitjaru P, Anantanasuwong S, Adachi S (2011) Emulsifying and Foaming Properties of Defatted Soy Meal Extracts Obtained by Subcritical Water Treatment. Int J Food Prop 14(1):9–16. doi:10.1080/10942910903112118

    Article  CAS  Google Scholar 

  • Li Y, Chen Z, Mo H (2007) Effects of pulsed electric fields on physicochemical properties of soybean protein isolates. LWT-Food Scie and Tech 40(7):1167–1175

    Article  CAS  Google Scholar 

  • Liu W, Zhang Z-Q, Liu C-M, Xie M-Y, Tu Z-C, Liu J-H, Liang R-H (2010) The effect of dynamic high-pressure microfluidization on the activity, stability and conformation of trypsin. Food Chem 123(3):616–621. doi:10.1016/j.foodchem.2010.04.079

    Article  CAS  Google Scholar 

  • Liu C-M, Zhong J-Z, Liu W, Tu Z-C, Wan J, Cai X-F, Song X-Y (2011) Relationship between Functional Properties and Aggregation Changes of Whey Protein Induced by High Pressure Microfluidization. J Food Sci 76(4):E341–E347. doi:10.1111/j.1750-3841.2011.02134.x

    Article  CAS  Google Scholar 

  • Manoi K, Rizvi SSH (2009) Emulsification mechanisms and characterizations of cold, gel-like emulsions produced from texturized whey protein concentrate. Food Hydrocoll 23(7):1837–1847. doi:10.1016/j.foodhyd.2009.02.011

    Article  CAS  Google Scholar 

  • Martínez KD, Carrera Sánchez C, Rodríguez Patino JM, Pilosof AMR (2009) Interfacial and foaming properties of soy protein and their hydrolysates. Food Hydrocoll 23(8):2149–2157. doi:10.1016/j.foodhyd.2009.03.015

    Article  Google Scholar 

  • Martínez KD, Ganesan V, Pilosof AMR, Harte FM (2011) Effect of dynamic high-pressure treatment on the interfacial and foaming properties of soy protein isolate–hydroxypropylmethylcelluloses systems. Food Hydrocoll 25(6):1640–1645. doi:10.1016/j.foodhyd.2011.02.013

    Article  Google Scholar 

  • Narita Y, Inouye K (2012) High antioxidant activity of coffee silverskin extracts obtained by the treatment of coffee silverskin with subcritical water. Food Chem 135(3):943–949. doi:10.1016/j.foodchem.2012.05.078

    Article  CAS  Google Scholar 

  • Ogunwolu SO, Henshaw FO, Mock H-P, Santros A, Awonorin SO (2009) Functional properties of protein concentrates and isolates produced from cashew (Anacardium occidentale L.) nut. Food Chem 115(3):852–858. doi:10.1016/j.foodchem.2009.01.011

    Article  CAS  Google Scholar 

  • Pednekar M, Das AK, Rajalakshmi V, Sharma A (2010) Radiation processing and functional properties of soybean (Glycine max). Radiat Phys Chem 79(4):490–494. doi:10.1016/j.radphyschem.2009.10.009

    Article  CAS  Google Scholar 

  • Rocha CS, Luz DF, Oliveira ML, Baracat-Pereira MC, Medrano FJ, Fontes EP (2007) Expression of the sucrose binding protein from soybean: renaturation and stability of the recombinant protein. Phytochemistry 68(6):802–810. doi:10.1016/j.phytochem.2006.11.036

    Article  CAS  Google Scholar 

  • Rogalinski T, Herrmann S, Brunner G (2005) Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis. J Supercrit Fluid 36(1):49–58. doi:10.1016/j.supflu.2005.03.001

    Article  CAS  Google Scholar 

  • Ruíz-Henestrosa VP, Sánchez CC, Pedroche JJ, Millán F, Rodríguez Patino JM (2009) Improving the functional properties of soy glycinin by enzymatic treatment Adsorption and foaming characteristics. Food Hydrocolloid 23(2):377–386. doi:10.1016/j.foodhyd.2008.03.011

    Article  Google Scholar 

  • Speroni F, Beaumal V, de Lamballerie M, Anton M, Añón MC, Puppo MC (2009) Gelation of soybean proteins induced by sequential high-pressure and thermal treatments. Food Hydrocolloid 23(5):1433–1442. doi:10.1016/j.foodhyd.2008.11.008

    Article  CAS  Google Scholar 

  • Su J-F, Huang Z, Liu K, Fu L-L, Liu H-R (2007) Mechanical Properties, Biodegradation and Water Vapor Permeability of Blend Films of Soy Protein Isolate and Poly (vinyl alcohol) Compatibilized by Glycerol. Polym Bull 58(5–6):913–921. doi:10.1007/s00289-007-0731-7

    Article  CAS  Google Scholar 

  • Su J-F, Huang Z, Yang C-M, Yuan X-Y (2008) Properties of soy protein isolate/poly (vinyl alcohol) blend “green” films: Compatibility, mechanical properties, and thermal stability. J Appl Polym Sci 110(6):3706–3716. doi:10.1002/app.28979

    Article  CAS  Google Scholar 

  • Su J-F, Yuan X-Y, Huang Z, Xia W-L (2010) Properties stability and biodegradation behaviors of soy protein isolate/poly (vinyl alcohol) blend films. Polym Degrad Stab 95(7):1226–1237. doi:10.1016/j.polymdegradstab.2010.03.035

    Article  CAS  Google Scholar 

  • Teo CC, Tan SN, Yong JWH, Hew CS, Ong ES (2010) Pressurized hot water extraction (PHWE). J Chromatogr A 1217(16):2484–2494. doi:10.1016/j.chroma.2009.12.050

    Article  CAS  Google Scholar 

  • Tsumura K (2009) Improvement of the physicochemical properties of soybean proteins by enzymatic hydrolysis. Food Sci Tech Res 15(4):381–388. doi:10.3136/fstr.15.381

    Article  CAS  Google Scholar 

  • Wang X-S, Tang C-H, Li B-S, Yang X-Q, Li L, Ma C-Y (2008) Effects of high-pressure treatment on some physicochemical and functional properties of soy protein isolates. Food Hydrocolloid 22(4):560–567. doi:10.1016/j.foodhyd.2007.01.027

    Article  CAS  Google Scholar 

  • Watchararuji K, Goto M, Sasaki M, Shotipruk A (2008) Value-added subcritical water hydrolysate from rice bran and soybean meal. Bio Techn 99(14):6207–6213. doi:10.1016/j.biortech.2007.12.021

    Article  CAS  Google Scholar 

  • Yeom H-J (2009) Production and Physicochemical Properties of Rice Bran Protein Isolates Prepared with Autoclaving and Enzymatic Hydrolysis. J of the Korean Society for Applied Bio Chem 53(1):62–70. doi:10.3839/jksabc.2010.011

    Article  Google Scholar 

  • Yuan B, Ren J, Zhao M, Luo D, Gu L (2012) Effects of limited enzymatic hydrolysis with pepsin and high-pressure homogenization on the functional properties of soybean protein isolate. LWT - Food Sci Technol 46 (2):453–459. doi:org/10.1016/j.lwt.2011.12.001

  • Zhang F, Xu S, Wang Z (2011) Pre-treatment optimization and properties of gelatin from freshwater fish scales. Food and Bioproducts Processing 89(3):185–193. doi:10.1016/j.fbp.2010.05.003

    Article  CAS  Google Scholar 

  • Zhao G, Liu Y, Zhao M, Ren J, Yang B (2011) Enzymatic hydrolysis and their effects on conformational and functional properties of peanut protein isolate. Food Chem 127(4):1438–1443. doi:10.1016/j.foodchem.2011.01.046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge National High Technology Research and Development Program of China (863 Program, No. 2013AA102205), National Program on Key Basic Research Project (No.2012CB126314), and Key Project for Science and Technology Innovation of Jiangxi Province (20124ACB00600)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zong-Cai Tu or Hui Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, QT., Tu, ZC., Wang, H. et al. Functional properties and structure changes of soybean protein isolate after subcritical water treatment. J Food Sci Technol 52, 3412–3421 (2015). https://doi.org/10.1007/s13197-014-1392-9

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1392-9

Keywords

Navigation