Skip to main content
Log in

Local Robust Estimation of Pareto-Type Tails with Random Right Censoring

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

We propose a nonparametric robust estimator for the tail index of a conditional Pareto-type distribution in the presence of censoring and random covariates. The censored distribution is also of Pareto-type and the index is estimated locally within a narrow neighbourhood of the point of interest in the covariate space using the minimum density power divergence method. The main asymptotic properties of our robust estimator are derived under mild regularity conditions and its finite sample performance is illustrated on a small simulation study. A real data example is included to illustrate the practical applicability of the estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu, A., Harris, I.R., Hjort, N.L. and Jones, M.C. (1998). Robust and efficient estimation by minimizing a density power divergence. Biometrika 85, 549–559.

    Article  MathSciNet  Google Scholar 

  • Beirlant, J., Dierckx, G., Goegebeur, Y. and Matthys, G. (1999). Tail index estimation and an exponential regression model. Extremes 2, 177–200.

    Article  MathSciNet  Google Scholar 

  • Beirlant, J., Guillou, A., Dierckx, G. and Fils-Villetard, A. (2007). Estimation of the extreme value index and extreme quantiles under random censoring. Extremes 10, 151–174.

    Article  MathSciNet  Google Scholar 

  • Beirlant, J., Joossens, E. and Segers, J. (2009). Second-order refined peaks-over-threshold modelling for heavy-tailed distributions. Journal of Statistical Planning and Inference 139, 2800–2815.

    Article  MathSciNet  Google Scholar 

  • Beirlant, J., Bardoutsos, A., de Wet, T. and Gijbels, I. (2016). Bias reduced tail estimation for censored Pareto type distributions. Statistics and Probability Letters109, 78–88.

    Article  MathSciNet  Google Scholar 

  • Billingsley, P. (1995). Probability and measure. Wiley, New York.

    MATH  Google Scholar 

  • Byrd, R.H., Lu, P., Nocedal, J. and Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing16, 1190–1208.

    Article  MathSciNet  Google Scholar 

  • Daouia, A., Gardes, L., Girard, S. and Lekina, A. (2011). Kernel estimators of extreme level curves. TEST 20, 311–333.

    Article  MathSciNet  Google Scholar 

  • Daouia, A., Gardes, L. and Girard, S. (2013). On kernel smoothing for extremal quantile regression. Bernoulli 19, 2557–2589.

    Article  MathSciNet  Google Scholar 

  • de Haan, L. and Ferreira, a. (2006). Extreme Value Theory: An Introduction. Springer, Berlin.

    Book  Google Scholar 

  • Dekkers, A.L.M., Einmahl, J.H.J. and de Haan, L. (1989). A moment estimator for the index of an extreme-value distribution. Annals of Statistics 17, 1833–1855.

    Article  MathSciNet  Google Scholar 

  • Dierckx, G., Goegebeur, Y. and Guillou, A. (2013). An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index. Journal of Multivariate Analysis 121, 70–86.

    Article  MathSciNet  Google Scholar 

  • Dierckx, G., Goegebeur, Y. and Guillou, A. (2014). Local robust and asymptotically unbiased estimation of conditional Pareto-type tails. TEST 23, 330–355.

    Article  MathSciNet  Google Scholar 

  • Drees, H. (1998). On smooth statistical tail functionals. Scandinavian Journal of Statistics 25, 187–210.

    Article  MathSciNet  Google Scholar 

  • Einmahl, J.H.J., Fils-Villetard, A. and Guillou, A. (2008). Statistics of extremes under random censoring. Bernoulli 14, 207–227.

    Article  MathSciNet  Google Scholar 

  • Escobar-Bach, M., Goegebeur, Y. and Guillou, A. (2018). Local robust estimation of the Pickands dependence function. Annals of Statistics 46, 2806–2843.

    Article  MathSciNet  Google Scholar 

  • Feuerverger, A. and Hall, P. (1999). Estimating a tail exponent by modelling departure from a Pareto distribution. Annals of Statistics 27, 760–781.

    Article  MathSciNet  Google Scholar 

  • Goegebeur, Y., Guillou, A. and Osmann, M. (2014a). A local moment type estimator for the extreme value index in regression with random covariates. Canadian Journal of Statistics 42, 487–507.

  • Goegebeur, Y., Guillou, A. and Schorgen, A. (2014b). Nonparametric regression estimation of conditional tails - the random covariate case. Statistics 48, 732–755.

  • Goegebeur, Y., Guillou, A. and Qin, J. (2019). Bias-corrected estimation for conditional Pareto-type distributions with random right censoring. To appear in Extremes. https://hal.archives-ouvertes.fr/hal-01826112/document.

  • Gomes, M.I. and Martins, M.J. (2004). Bias reduction and explicit estimation of the extreme value index. Journal of Statistical Planning and Inference 124, 361–378.

    Article  MathSciNet  Google Scholar 

  • Hall, P. (1982). On some simple estimates of an exponent of regular variation. Journal of the Royal Statistical Society Series B 44, 37–42.

    MathSciNet  MATH  Google Scholar 

  • Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution. Annals of Statistics 3, 1163–1174.

    Article  MathSciNet  Google Scholar 

  • Kim, M. and Lee, S. (2008). Estimation of a tail index based on minimum density power divergence. Journal of Multivariate Analysis 99, 2453–2471.

    Article  MathSciNet  Google Scholar 

  • Lehmann, E.L. and Casella, G. (1998). Theory of Point Estimation. Springer, Berlin.

    MATH  Google Scholar 

  • Ndao, P., Diop, A. and Dupuy, J. -F. (2014). Nonparametric estimation of the conditional tail index and extreme quantiles under random censoring. Computational Statistics and Data Analysis 79, 63–79.

    Article  MathSciNet  Google Scholar 

  • Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics 3, 119–131.

    Article  MathSciNet  Google Scholar 

  • Stupfler, G. (2013). A moment estimator for the conditional extreme-value index. Electronic Journal of Statistics 7, 2298–2353.

    Article  MathSciNet  Google Scholar 

  • Stupfler, G. (2016). Estimating the conditional extreme-value index under random right-censoring. Journal of Multivariate Analysis 144, 1–24.

    Article  MathSciNet  Google Scholar 

  • van der Vaart, A.W. (1998). Asymptotic statistics. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Venables, W.N. and Ripley, B.D. (2002). Modern applied statistics with S, 4th edn. Springer, New York.

    Book  Google Scholar 

  • Wang, H. and Tsai, C.L. (2009). Tail index regression. Journal of the American Statistical Association 104, 1233–1240.

    Article  MathSciNet  Google Scholar 

  • Wang, H., Li, D. and He, X. (2012). Estimation of high conditional quantiles for heavy-tailed distributions. Journal of the American Statistical Association 107, 1453–1464.

    Article  MathSciNet  Google Scholar 

  • Worms, J. and Worms, R. (2014). New estimators of the extreme value index under random right censoring, for heavy-tailed distributions. Extremes 17, 337–358.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the editor, associate editor and referees for their helpful comments which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Goegebeur.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 409 KB)

Appendices

Appendix

Proof of Theorem 1

We focus on deriving the asymptotic expansion for \(\mathbb E(T_{n}^{(2)}(K|x_{0}))\). Then, \(\mathbb E(T_{n}^{(1)}(K,s,s^{\prime }|x_{0}))\) can be handled similarly, combined with some ideas from Dierckx et al. (2014). Note that Dierckx et al. (2014) also considered the statistic \(T_{n}^{(1)}(K,s,s^{\prime }|x_{0})\), though it was analysed under their high level assumption called \((\mathcal M)\), which is avoided in the present paper, and this allows us to obtain a more precise statement of the remainder terms using the Hölder exponents from condition \((\mathcal H)\).

We have

In view of the various Hölder conditions, the latter is further decomposed as

$$ \begin{array}{@{}rcl@{}} \lefteqn{\mathbb E(T_{n}^{(2)}(K|x_{0})) =} \\ & & f_{X}(x_{0}) {\int}_{t_{n}}^{\infty} f_{Y}(y|x_{0})\overline F_{C}(y|x_{0})dy \\ & & + {\int}_{t_{n}}^{\infty} f_{Y}(y|x_{0})\overline F_{C}(y|x_{0})dy {\int}_{S_{K}} K(z) (f_{X}(x_{0}-h_{n}z)-f_{X}(x_{0}))dz \\ & & + f_{X}(x_{0}) {\int}_{S_{K}} K(z) {\int}_{t_{n}}^{\infty} f_{Y}(y|x_{0})(\overline F_{C}(y|x_{0}-h_{n}z)-\overline F_{C}(y|x_{0}))dydz \\ & & + {\int}_{S_{K}} K(z) {\int}_{t_{n}}^{\infty} f_{Y}(y|x_{0})(\overline F_{C}(y|x_{0}-h_{n}z)-\overline F_{C}(y|x_{0}))dy(f_{X}(x_{0}-h_{n}z)-f_{X}(x_{0}))dz \\ & & + f_{X}(x_{0}) {\int}_{S_{K}} K(z) {\int}_{t_{n}}^{\infty} (f_{Y}(y|x_{0}-h_{n}z)-f_{Y}(y|x_{0}))\overline F_{C}(y|x_{0}))dydz \\ & & + {\int}_{S_{K}} K(z) {\int}_{t_{n}}^{\infty} (f_{Y}(y|x_{0}-h_{n}z)-f_{Y}(y|x_{0}))\overline F_{C}(y|x_{0})dy(f_{X}(x_{0}-h_{n}z)-f_{X}(x_{0}))dz \\ & & +f_{X}(x_{0}) {\int}_{S_{K}} K(z) {\int}_{t_{n}}^{\infty} (f_{Y}(y|x_{0}-h_{n}z)-f_{Y}(y|x_{0}))(\overline F_{C}(y|x_{0}-h_{n}z)-\overline F_{C}(y|x_{0}))dydz \\ & & + {\int}_{S_{K}} K(z) {\int}_{t_{n}}^{\infty} (f_{Y}(y|x_{0}-h_{n}z)-f_{Y}(y|x_{0}))(\overline F_{C}(y|x_{0}-h_{n}z)\\&&-\overline F_{C}(y|x_{0}))dy(f_{X}(x_{0}-h_{n}z)-f_{X}(x_{0}))dz \\&&\quad=: T_{1}+\cdots+T_{8}. \end{array} $$

Concerning T1 we have

$$ \begin{array}{@{}rcl@{}} T_{1} = t_{n} f_{Y}(t_{n}|x_{0}) \overline F_{C}(t_{n}|x_{0})f_{X}(x_{0}) {\int}_{1}^{\infty} \frac{f_{Y}(t_{n}z|x_{0})}{f_{Y}(t_{n}|x_{0})} \frac{\overline F_{C}(t_{n}z|x_{0})}{\overline F_{C}(t_{n}|x_{0})}dz. \end{array} $$

A slight modification of Proposition 2.3 in Beirlant et al. (2009) gives

$$ \begin{array}{@{}rcl@{}} \sup_{z \ge 1} z^{1/\gamma_{\bullet}(x)}\left| \frac{\overline F_{\bullet}(t_{n}z|x_{0})}{\overline F_{\bullet}(t_{n}|x_{0})} - \overline G(z;\gamma_{\bullet}(x_{0}),\delta_{\bullet}(t_{n}|x_{0}),\rho_{\bullet}(x_{0})) \right| = o(\delta_{\bullet}(t_{n}|x_{0})), \hspace{1cm} t_{n} \to \infty. \end{array} $$

This leads to the decomposition

$$ \begin{array}{@{}rcl@{}} T_{1} & = & t_{n} f_{Y}(t_{n}|x_{0}) \overline F_{C}(t_{n}|x_{0})f_{X}(x_{0}) \left[ {\int}_{1}^{\infty} \frac{f_{Y}(t_{n}z|x_{0})}{f_{Y}(t_{n}|x_{0})} \overline G(z;\gamma_{C}(x_{0}),\delta_{C}(t_{n}|x_{0}),\rho_{C}(x_{0}))dz \right. \\ & & + \left. {\int}_{1}^{\infty} \frac{f_{Y}(t_{n}z|x_{0})}{f_{Y}(t_{n}|x_{0})} \left( \frac{\overline F_{C}(t_{n}z|x_{0})}{\overline F_{C}(t_{n}|x_{0})} - \overline G(z;\gamma_{C}(x_{0}),\delta_{C}(t_{n}|x_{0}),\rho_{C}(x_{0})) \right)dz \right] \\ & =: & t_{n} f_{Y}(t_{n}|x_{0}) \overline F_{C}(t_{n}|x_{0})f_{X}(x_{0}) (T_{1,1}+T_{1,2}). \end{array} $$

From Eq. 2.1 we can write

$$ \begin{array}{@{}rcl@{}} T_{1,1}& = & {\int}_{1}^{\infty} z^{-1/\gamma_{Y}(x_{0})-1}\overline G(z;\gamma_{C}(x_{0}),\delta_{C}(t_{n}|x_{0}),\rho_{C}(x_{0}))dz \\ & & + \frac{1}{1+\left( \frac{1}{\gamma_{Y}(x_{0})}-\varepsilon_{Y}(t_{n}|x_{0}) \right)\delta_{Y}(t_{n}|x_{0})} \left[\frac{}{} \right. \\ & & \frac{\delta_{Y}(t_{n}|x_{0})}{\gamma_{Y}(x_{0})}{\int}_{1}^{\infty} z^{-1/\gamma_{Y}(x_{0})-1}(z^{\rho_{Y}(x_{0})/\gamma_{Y}(x_{0})}-1)\overline G(z;\gamma_{C}(x_{0}),\delta_{C}(t_{n}|x_{0}),\rho_{C}(x_{0}))dz \\ & & + \frac{\delta_{Y}(t_{n}|x_{0})}{\gamma_{Y}(x_{0})}{\int}_{1}^{\infty} z^{-1/\gamma_{Y}(x_{0})-1}\left( \frac{\delta_{Y}(t_{n}z|x_{0})}{\delta_{Y}(t_{n}|x_{0})} - z^{\rho_{Y}(x_{0})/\gamma_{Y}(x_{0})}\right)\overline G(z;\gamma_{C}(x_{0}),\delta_{C}(t_{n}|x_{0}),\rho_{C}(x_{0}))dz \\ & & - \varepsilon_{Y}(t_{n}|x_{0})\delta_{Y}(t_{n}|x_{0}) {\int}_{1}^{\infty} z^{-1/\gamma_{Y}(x_{0})-1}{}\left( {}\frac{\varepsilon_{Y}(t_{n}z|x_{0})}{\varepsilon_{Y}(t_{n}|x_{0})} - 1{}\right){} \frac{\delta_{Y}(t_{n}z|x_{0})}{\delta_{Y}(t_{n}|x_{0})}\overline G(z;\gamma_{C}(x_{0}),\delta_{C}(t_{n}|x_{0}),\rho_{C}(x_{0}))dz \\ & & \left. - \varepsilon_{Y}(t_{n}|x_{0})\delta_{Y}(t_{n}|x_{0}) {\int}_{1}^{\infty} z^{-1/\gamma_{Y}(x_{0})-1}\left( \frac{\delta_{Y}(t_{n}z|x_{0})}{\delta_{Y}(t_{n}|x_{0})}- 1\right)\overline G(z;\gamma_{C}(x_{0}),\delta_{C}(t_{n}|x_{0}),\rho_{C}(x_{0}))dz \right] \\ & =: & T_{1,1,1}+ \frac{1}{1+\left( \frac{1}{\gamma_{Y}(x_{0})}-\varepsilon_{Y}(t_{n}|x_{0}) \right)\delta_{Y}(t_{n}|x_{0})} (T_{1,1,2}+\cdots+T_{1,1,5}). \end{array} $$

In order to deal with these integrals, the following expansion of the extended Pareto distribution is useful

$$ \begin{array}{@{}rcl@{}} \overline G(z;\gamma_{\bullet}(x_{0}),\delta_{\bullet}(t_{n}|x_{0}),\rho_{\bullet}(x_{0})) = z^{-1/\gamma_{\bullet}(x_{0})} \left( 1-\frac{\delta_{\bullet}(t_{n}|x_{0})}{\gamma_{\bullet}(x_{0})}(1\!-z^{\rho_{\bullet}(x_{0})/\gamma_{\bullet}(x_{0})})+O(\delta_{\bullet}^{2}(t_{n}|x_{0}))\right), \end{array} $$

where \(O(\delta _{\bullet }^{2}(t_{n}|x_{0}))\) is uniform in z ≥ 1.

A straightforward calculation gives then

$$ \begin{array}{@{}rcl@{}} T_{1,1,1} & = & \gamma_{T}(x_{0})+\delta_{C}(t_{n}|x_{0})\frac{{\gamma_{T}^{2}}(x_{0})\rho_{C}(x_{0})}{\gamma_{C}(x_{0})(\gamma_{C}(x_{0})-\gamma_{T}(x_{0})\rho_{C}(x_{0}))} +O({\delta_{C}^{2}}(t_{n}|x_{0})), \\ T_{1,1,2} & = & \delta_{Y}(t_{n}|x_{0})\frac{{\gamma_{T}^{2}}(x_{0})\rho_{Y}(x_{0})}{\gamma_{Y}(x_{0})(\gamma_{Y}(x_{0})-\gamma_{T}(x_{0})\rho_{Y}(x_{0}))} + O(\delta_{Y}(t_{n}|x_{0})\delta_{C}(t_{n}|x_{0})). \end{array} $$

For T1,1,3 we use Proposition B.1.10 in de de Haan and Ferreira (2006), see also Drees (1998). Thus, for ε > 0 and 0 < δ < 1/γT(x0) − ρY(x0)/γY(x0) arbitrary, and n sufficiently large, we have

$$ \begin{array}{@{}rcl@{}} |T_{1,1,3}| & \le & \varepsilon \frac{|\delta_{Y}(t_{n}|x_{0})|}{\gamma_{Y}(x_{0})} {\int}_{1}^{\infty} z^{-(1-\rho_{Y}(x_{0}))/\gamma_{Y}(x_{0})+\delta-1}\overline G(z;\gamma_{C}(x_{0}),\delta_{C}(t_{n}|x_{0}),\rho_{C}(x_{0}))dz. \end{array} $$

Since ε is arbitrary and by using calculations for the integral that are similar to those above, one finds that T1,1,3 = o(δY(tn|x0)). In the same way T1,1,4 = o(δY(tn|x0)), and

$$ \begin{array}{@{}rcl@{}} T_{1,1,5} & = & - \varepsilon_{Y}(t_{n}|x_{0})\delta_{Y}(t_{n}|x_{0}) \frac{{\gamma_{T}^{2}}(x_{0})\rho_{Y}(x_{0})}{\gamma_{Y}(x_{0})-\gamma_{T}(x_{0})\rho_{Y}(x_{0})}+o(\delta_{Y}(t_{n}|x_{0})). \end{array} $$

Analogously one can show that T1,2 = o(δC(tn|x0)).

Collecting the terms gives then

$$ \begin{array}{@{}rcl@{}} T_{1}& = & t_{n} f_{Y}(t_{n}|x_{0}) \overline F_{C}(t_{n}|x_{0})f_{X}(x_{0})\gamma_{T}(x_{0}) \left[1 + \delta_{C}(t_{n}|x_{0})\frac{\gamma_{T}(x_{0})\rho_{C}(x_{0})}{\gamma_{C}(x_{0})(\gamma_{C}(x_{0}) - \gamma_{T}(x_{0})\rho_{C}(x_{0}))}\right.\\&&(1+o(1))\\ & & \left. + \delta_{Y}(t_{n}|x_{0}) \left( \frac{1}{\gamma_{Y}(x_{0})}-\varepsilon_{Y}(t_{n}|x_{0}) \right)\frac{\gamma_{T}(x_{0})\rho_{Y}(x_{0})}{\gamma_{Y}(x_{0})-\gamma_{T}(x_{0})\rho_{Y}(x_{0})}(1+o(1)) \right]. \end{array} $$

Note that

$$ \begin{array}{@{}rcl@{}} t_{n} f_{Y}(t_{n}|x_{0})\overline F_{C}(t_{n}|x_{0}) = \frac{\overline F_{T}(t_{n}|x_{0})}{\gamma_{Y}(x_{0})}\left( 1-\frac{\varepsilon_{Y}(t_{n}|x_{0})\delta_{Y}(t_{n}|x_{0})} {1+\frac{\delta_{Y}(t_{n}|x_{0})}{\gamma_{Y}(x_{0})}} \right), \end{array} $$

whence

$$ \begin{array}{@{}rcl@{}} T_{1} &=& \overline F_{T}(t_{n}|x_{0} )f_{X}(x_{0}) \frac{\gamma_{T}(x_{0})}{\gamma_{Y}(x_{0})}\left\lbrace 1+ \delta_{C}(t_{n}|x_{0})\frac{\gamma_{T}(x_{0})\rho_{C}(x_{0})}{\gamma_{C}(x_{0})(\gamma_{C}(x_{0})-\gamma_{T}(x_{0})\rho_{C}(x_{0}))}(1+o(1)) \right. \\ & & + \left. \delta_{Y}(t_{n}|x_{0}) \left[ \left( \frac{1}{\gamma_{Y}(x_{0})}\!-\varepsilon_{Y}(t_{n}|x_{0}) \right)\frac{\gamma_{T}(x_{0})\rho_{Y}(x_{0})}{\gamma_{Y}(x_{0})-\gamma_{T}(x_{0})\rho_{Y}(x_{0})}\!-\varepsilon_{Y}(t_{n}|x_{0}) \right](1+o(1)) \right\rbrace. \end{array} $$

For T2, we use the Hölder condition on fX and obtain \(T_{2} = O(h^{\eta _{f_{X}}}\overline F_{T}(t_{n}|x_{0}))\).

By rearranging terms we obtain the following bound for T3

$$ \begin{array}{@{}rcl@{}} &&|T_{3}| \le f_{Y}(t_{n}|x_{0}) \overline F_{C}(t_{n}|x_{0})f_{X}(x_{0}) {\int}_{S_{K}} K(z) {\int}_{t_{n}}^{\infty} \frac{f_{Y}(y|x_{0})}{f_{Y}(t_{n}|x_{0})}\frac{\overline F_{C}(y|x_{0})}{\overline F_{C}(t_{n}|x_{0})}\\&&\left|\frac{\overline F_{C}(y|x_{0}-h_{n}z)}{\overline F_{C}(y|x_{0})}-1 \right| dy dz, \end{array} $$
(3.4)

and from condition \((\mathcal H)\), for n large, and some constants M1, M2 and M3,

$$ \begin{array}{@{}rcl@{}} \left|\frac{\overline F_{C}(y|x_{0}-h_{n}z)}{\overline F_{C}(y|x_{0})}-1 \right| &\le& M_{1} \left( h_{n}^{\eta_{A_{C}}}+y^{M_{2}h_{n}^{\eta_{\gamma_{C}}}}h_{n}^{\eta_{\gamma_{C}}}\log y + |\delta_{C}(y|x_{0})|h_{n}^{\eta_{B_{C}}} \right. \\ & & + \left. |\delta_{C}(y|x_{0})|y^{M_{3} h_{n}^{\eta_{\varepsilon_{C}}}}h_{n}^{\eta_{\varepsilon_{C}}} \log y \right). \end{array} $$

Plugging the above inequality into Eq. 3.4, and computing integrals similar to those encountered above yields

$$ \begin{array}{@{}rcl@{}} T_{3} = O \left( \overline F_{T}(t_{n}|x_{0}) (h_{n}^{\eta_{A_{C}}}+h_{n}^{\eta_{\gamma_{C}}}\log t_{n} + \delta_{C}(t_{n}|x_{0})h_{n}^{\eta_{B_{C}}}+\delta_{C}(t_{n}|x_{0})h_{n}^{\eta_{\varepsilon_{C}}}\log t_{n} ) \right). \end{array} $$

Using the Hölder condition on fX one easily verifies that T4 is of smaller order than T3.

As for T5, we can write

$$ \begin{array}{@{}rcl@{}} &&|T_{5}| \le f_{Y}(t_{n}|x_{0}) \overline F_{C}(t_{n}|x_{0})f_{X}(x_{0}) {\int}_{S_{K}} K(z) {\int}_{t_{n}}^{\infty} \frac{f_{Y}(y|x_{0})}{f_{Y}(t_{n}|x_{0})}\frac{\overline F_{C}(y|x_{0})}{\overline F_{C}(t_{n}|x_{0})}\\&&\left|\frac{f_{Y}(y|x_{0}-h_{n}z)}{ f_{Y}(y|x_{0})}-1 \right| dy dz, \end{array} $$

which, combined with the inequality

$$ \begin{array}{@{}rcl@{}} \left|\frac{f_{Y}(y|x_{0}-h_{n}z)}{f_{Y}(y|x_{0})}-1 \right| &\le& M_{1} \left( h_{n}^{\eta_{A_{Y}}}+y^{M_{2}h_{n}^{\eta_{\gamma_{Y}}}}h_{n}^{\eta_{\gamma_{Y}}}\log y + |\delta_{Y}(y|x_{0})|h_{n}^{\eta_{B_{Y}}} \right. \\ & & + \left. |\delta_{Y}(y|x_{0})|y^{M_{3} h_{n}^{\eta_{\varepsilon_{Y}}}}h_{n}^{\eta_{\varepsilon_{Y}}} \log y \right), \end{array} $$

valid for n large, where M1, M2 and M3 are some constants, leads to

$$ \begin{array}{@{}rcl@{}} T_{5} = O \left (\overline F_{T}(t_{n}|x_{0}) (h_{n}^{\eta_{A_{Y}}}+h_{n}^{\eta_{\gamma_{Y}}}\log t_{n} + \delta_{Y}(t_{n}|x_{0})h_{n}^{\eta_{B_{Y}}}+\delta_{Y}(t_{n}|x_{0})h_{n}^{\eta_{\varepsilon_{Y}}}\log t_{n} ) \right). \end{array} $$

After tedious calculations, but essentially involving integrals similar to the ones above, one can verify that T6, T7 and T8, are of smaller order than terms that were already encountered before.

Collecting the terms then establishes Theorem 1.

Proof of Theorem 2

To prove the result we make use of the Cramér-Wold device (see, e.g., van der Vaart, 1998, p.16).

Take \(\xi =(\xi _{1},\ldots ,\xi _{J+1})^{T} \in \mathbb R^{J+1}\). Then

We have

$$ \begin{array}{@{}rcl@{}} \mathbb{V}ar (W_{1}) = \frac{\xi^{T} \mathbb{C} \xi}{n}, \end{array} $$

where \(\mathbb {C}\) has elements

As for \(\mathbb {C}_{j,k}\), with j,k ∈{1,…,J}, we have, by a straightforward application of Theorem 1

$$ \begin{array}{@{}rcl@{}} \mathbb{C}_{j,k} &=& \frac{{h_{n}^{d}}}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})}\!\! \left[\frac{ \overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})\|K\|_{2}^{2}\gamma_{T}^{s_{j}^{\prime}\!+s_{k}^{\prime}}(x_{0}){\Gamma}(s_{j}^{\prime} + s_{k}^{\prime} + 1)}{{h_{n}^{d}}(1-(s_{j} + s_{k})\gamma_{T}(x_{0}))^{s_{j}^{\prime}+s_{k}^{\prime}+1}}\right. \\&&\left.(1\! + o(1)) + O(\overline {F^{2}_{T}}(t_{n}|x_{0})) \vphantom{\frac{1}{F_{T}(t_{n}|x_{0})f_{X}(x_{0})\|K\|_{2}^{2}\gamma_{T}^{s_{j}^{\prime}\!+s_{k}^{\prime}}}}\right] \\ &= & {\Sigma}_{j,k}(1+o(1)). \end{array} $$

In the same way, by using Theorem 1, \(\mathbb {C}_{J+1,J+1}={\Sigma }_{J+1,J+1}(1+o(1))\). For \(\mathbb {C}_{J+1,j}\), j ∈{1,…,J}, we need to evaluate an expectation of the form

By arguments similar to those used in deriving the expansion for \(\mathbb E(T_{n}^{(2)}(K|x_{0}))\) we obtain

(3.5)

In order to establish the weak convergence to a Gaussian random variable we need to verify the Lyapounov condition (see, e.g., Billingsley, 1995, p. 362), which simplifies in our setting to showing that \(\lim _{n \to \infty } n\mathbb E(|W_{1}|^{3})= 0\). To this aim, note that W1 is of the form \(V-\mathbb E(V)\), leading to the inequality

$$ \begin{array}{@{}rcl@{}} \mathbb E (|W_{1}|^{3}) \le \mathbb E(|V^{3}|)+3 \mathbb E(V^{2})\mathbb E(|V|)+4(\mathbb E(|V|))^{3}. \end{array} $$

Again using the result from Theorem 1 and Eq. 3.5, we obtain the following orders

$$ \begin{array}{@{}rcl@{}} \mathbb E(|V|^{3}) & = & O \left( \frac{1}{n^{3/2}\sqrt{{h_{n}^{d}} \overline F_{T}(t_{n}|x_{0})} } \right), \\ \mathbb E(V^{2}) \mathbb E(|V|) & = & O\left( \frac{\sqrt{{h_{n}^{d}}\overline F_{T}(t_{n}|x_{0})}}{n^{3/2}} \right), \\ \mathbb (E(|V|))^{3} & = & O \left( \left( \frac{{h_{n}^{d}} \overline F_{T}(t_{n}|x_{0})}{n} \right)^{3/2} \right), \end{array} $$

so that \( n\mathbb E(|W_{1}|^{3}) \to 0\) under our assumption rn.

Proof of Theorem 3

Let

$$ \begin{array}{@{}rcl@{}} \widetilde{\mathbb{S}}_{n}^{(j)} & := & \left\lbrace r_{n} \left[ \frac{T_{n}^{(1)}(K,s,j|x_{0})}{\overline F(t_{n}|x_{0})f_{X}(x_{0})} - \mathbb E\left( \frac{T_{n}^{(1)}(K,s,j|x_{0})}{\overline F(t_{n}|x_{0})f_{X}(x_{0})}\right) \right]; s\in [S,0] \right\rbrace, \hspace{1cm} j \in \lbrace 0,1,2,3 \rbrace, \\ \widetilde{\mathbb{S}}_{n}^{(4)} & := & r_{n} \left[ \frac{T_{n}^{(2)}(K|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})}- \mathbb E \left( \frac{T_{n}^{(2)}(K|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \right) \right]. \end{array} $$

The weak convergence of the individual processes \(\widetilde {\mathbb {S}}_{n}^{(j)}\), j ∈{0,1,2,3}, to tight, zero centered, Gaussian processes, with a covariance structure as given in the statement of the theorem, can be established following the arguments in the proof of Theorem 1 in Dierckx et al. (2014), while the weak convergence of \(\widetilde {\mathbb {S}}_{n}^{(4)}\) to a zero centered Gaussian random variable with variance as in the statement of the theorem follows from Theorem 2. Then joint tightness will follow from the individual tightness. The joint tightness combined with the finite dimensional convergence from Theorem 2 leads then to the joint weak convergence of \((\widetilde {\mathbb {S}}_{n}^{(0)},\widetilde {\mathbb {S}}_{n}^{(1)},\widetilde {\mathbb {S}}_{n}^{(2)},\widetilde {\mathbb {S}}_{n}^{(3)},\widetilde {\mathbb {S}}_{n}^{(4)})\). It remains to verify the expressions for the expected values of \(\mathbb {S}^{(j)}\), j ∈{0,1,…,4}. To this aim we study

$$ \begin{array}{@{}rcl@{}} r_{n} \left[ \mathbb E\left( \frac{T_{n}^{(1)}(K,s,j|x_{0})}{\overline F(t_{n}|x_{0})f_{X}(x_{0})}\right) - \frac{j!{\gamma_{T}^{j}}(x_{0})}{(1-s\gamma_{T}(x_{0}))^{j+1}}\right], \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} r_{n} \left[ \mathbb E\left( \frac{T_{n}^{(2)}(K|x_{0})}{\overline F(t_{n}|x_{0})f_{X}(x_{0})}\right) - \frac{\gamma_{T}(x_{0})}{\gamma_{Y}(x_{0})}\right]. \end{array} $$

A straightforward application of Theorem 1, and taking the link between δT(tn|x0), δY(tn|x0) and δC(tn|x0) into account, one easily obtains the expressions for the expected values of the limiting processes \(\mathbb {S}^{(0)}\), \(\mathbb {S}^{(1)}\), \(\mathbb {S}^{(2)}\) and \(\mathbb {S}^{(3)}\), and the random variable \(\mathbb {S}^{(4)}\).

Proof of Theorem 4

The consistency of \(\widehat \gamma _{T,n}(x_{0}|\tilde \rho )\) and \(\widehat \delta _{T,n}(x_{0}|\tilde \rho )\) for \(\gamma _{T}^{(0)}(x_{0})\) and 0, respectively, follows from Proposition 1 in Dierckx et al. (2014).

Concerning \(\widehat p_{n}(x_{0})\) we have from Theorem 1

$$ \begin{array}{@{}rcl@{}} \mathbb E \left( \frac{T_{n}^{(1)}(K,0,0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \right) & = & 1+o(1), \\ \mathbb E \left( \frac{T_{n}^{(2)}(K|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \right) & = & \frac{\gamma_{T}^{(0)}(x_{0})}{\gamma_{Y}^{(0)}(x_{0})} +o(1), \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} \mathbb{V}ar\left( \frac{T_{n}^{(1)}(K,0,0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \right) & = & O \left( \frac{1}{n{h_{n}^{d}} \overline F_{T}(t_{n}|x_{0})} \right), \\ \mathbb{V}ar\left( \frac{T_{n}^{(2)}(K|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \right) & = & O \left( \frac{1}{n{h_{n}^{d}} \overline F_{T}(t_{n}|x_{0})} \right). \end{array} $$

Thus

$$ \begin{array}{@{}rcl@{}} \frac{T_{n}^{(1)}(K,0,0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \stackrel{P}{\to} 1 \hspace{.5cm} \text{ and} \hspace{.5cm} \frac{T_{n}^{(2)}(K|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \stackrel{P}{\to} \frac{\gamma_{T}^{(0)}(x_{0})}{\gamma_{Y}^{(0)}(x_{0})}, \end{array} $$

and hence, by the continuous mapping theorem, \(\widehat p_{n}(x_{0}) \stackrel {P}{\to } \gamma _{T}^{(0)}(x_{0})/\gamma _{Y}^{(0)}(x_{0}) \). Another application of the continuous mapping theorem gives then \(\widehat \gamma _{Y,n}(x_{0}|\tilde \rho ) \stackrel {P}{\to } \gamma _{Y}^{(0)}(x_{0})\).

Proof of Theorem 5

Let \(\widetilde {\Delta }_{\alpha }(\gamma ,\delta ;\tilde \rho ) := \widehat {\Delta }_{\alpha }(\gamma ,\delta ;\tilde \rho )/(\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0}))\), and let \(\widetilde {\Delta }_{\alpha ,u}(\gamma ,\delta ;\tilde \rho )\), u = 1,2, denote the derivatives with respect to γ and δ, respectively, apart from the common scale factor 1 + α. Similarly, \(\widetilde {\Delta }_{\alpha ,u,v}(\gamma ,\delta ;\tilde \rho )\) and \(\widetilde {\Delta }_{\alpha ,u,v,w}(\gamma ,\delta ;\tilde \rho )\), u,v,w = 1,2, will denote second and third order derivatives (again apart from the common scaling by 1 + α).

We apply a Taylor series expansion of the estimating equations (??) and (??) around \((\gamma _{T}^{(0)}(x_{0}),0)\), and extend these with \(T_{n}^{(1)}(K,0,0|x_{0})\) and \(T_{n}^{(2)}(K|x_{0})\) to obtain

$$ \begin{array}{@{}rcl@{}} \lefteqn{r_{n} \left[ \begin{array}{c} -\widetilde {\Delta}_{\alpha,1}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) \\ -\widetilde {\Delta}_{\alpha,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) \\ \frac{T_{n}^{(1)}(K,0,0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} -1 \\ \frac{T_{n}^{(2)}(K|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} -\frac{\gamma_{T}^{(0)}(x_{0})}{\gamma_{Y}^{(0)}(x_{0})} \end{array} \right] =} \\ & & \left[ \begin{array}{cccc} \overline {\Delta}_{\alpha,1,1}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) & \overline {\Delta}_{\alpha,1,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) & 0 & 0\\ \overline {\Delta}_{\alpha,1,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) & \overline {\Delta}_{\alpha,2,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] \\&&\times\kern.8pc\left[ \begin{array}{c} r_{n} (\widehat \gamma_{T,n}(x_{0}|\tilde \rho)-\gamma_{T}^{(0)}(x_{0})) \\ r_{n} \widehat \delta_{T,n}(x_{0}|\tilde \rho) \\ r_{n} \left( \frac{T_{n}^{(1)}(K,0,0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} -1 \right) \\ r_{n} \left( \frac{T_{n}^{(2)}(K|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} -\frac{\gamma_{T}^{(0)}(x_{0})}{\gamma_{Y}^{(0)}(x_{0})}\right) \end{array} \right] \end{array} $$

with

$$ \begin{array}{@{}rcl@{}} \overline {\Delta}_{\alpha,1,1}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) & := & \widetilde {\Delta}_{\alpha,1,1}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho)+\frac{1}{2} \left[ \widetilde {\Delta}_{\alpha,1,1,1}(\breve \gamma_{T,n}(x_{0}|\tilde \rho),\right. \\ & & \left. \breve \delta_{T,n}(x_{0}|\tilde \rho);\tilde \rho) (\widehat \gamma_{T,n}(x_{0}|\tilde \rho)-\gamma_{T}^{(0)}(x_{0})) \right. \\ & & \left. + \widetilde {\Delta}_{\alpha,1,1,2}(\breve \gamma_{T,n}(x_{0}|\tilde \rho),\breve \delta_{T,n}(x_{0}|\tilde \rho);\tilde \rho) \widehat \delta_{T,n}(x_{0}|\tilde \rho) \right], \\ \overline {\Delta}_{\alpha,1,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) & : = & \widetilde {\Delta}_{\alpha,1,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho)+\frac{1}{2} \left[ \widetilde {\Delta}_{\alpha,1,2,2}(\breve \gamma_{T,n}(x_{0}|\tilde \rho),\breve \delta_{T,n}(x_{0}|\tilde \rho);\right. \\ & & \left.\tilde \rho) \widehat \delta_{T,n}(x_{0}|\tilde \rho) \right. \\ & & \left. + \widetilde {\Delta}_{\alpha,1,1,2}(\breve \gamma_{T,n}(x_{0}|\tilde \rho),\breve \delta_{T,n}(x_{0}|\tilde \rho);\tilde \rho) (\widehat \gamma_{T,n}\right. \\ & & \left.(x_{0}|\tilde \rho)-\gamma_{T}^{(0)}(x_{0})) \right], \\ \overline {\Delta}_{\alpha,2,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) & := & \widetilde {\Delta}_{\alpha,2,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) +\frac{1}{2} \left[\widetilde {\Delta}_{\alpha,2,2,2}(\breve \gamma_{T,n}(x_{0}|\tilde \rho),\breve \delta_{T,n}(x_{0}|\tilde \rho);\tilde \rho)\right. \\ & & \left. \widehat \delta_{T,n}(x_{0}|\tilde \rho) \right. \\ & & \left. + \widetilde {\Delta}_{\alpha,1,2,2}(\breve \gamma_{T,n}(x_{0}|\tilde \rho),\breve \delta_{T,n}(x_{0}|\tilde \rho);\tilde \rho) (\widehat \gamma_{T,n}(x_{0}|\tilde \rho)-\gamma_{T}^{(0)}(x_{0})) \right], \end{array} $$

and where \((\breve \gamma _{T,n}(x_{0}|\tilde \rho ),\breve \delta _{T,n}(x_{0}|\tilde \rho ))\) is a point on the line segment connecting \((\gamma _{T}^{(0)}(x_{0}),0)\) and \((\widehat \gamma _{T,n}(x_{0}|\tilde \rho ),\widehat \delta _{T,n}(x_{0}|\tilde \rho ))\).

After tedious, but straightforward, derivations one obtains

$$ \begin{array}{@{}rcl@{}} \lefteqn{\widetilde {\Delta}_{\alpha,1}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho)} \\ & = & (\gamma_{T}^{(0)}(x_{0}))^{-\alpha-2} \left[-\frac{\alpha \gamma_{T}^{(0)}(x_{0})(1+\gamma_{T}^{(0)}(x_{0}))}{[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{2}}\frac{T_{n}^{(1)}(K,0,0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \right. \\ & & \left. +\gamma_{T}^{(0)}(x_{0})\frac{T_{n}^{(1)}(K,-\alpha(1+\gamma_{T}^{(0)}(x_{0}))/\gamma_{T}^{(0)}(x_{0}),0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})}\right. \\ & & \left.-\frac{T_{n}^{(1)}(K,-\alpha(1+\gamma_{T}^{(0)}(x_{0}))/\gamma_{T}^{(0)}(x_{0}),1|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \right], \end{array} $$
$$ \begin{array}{@{}rcl@{}} \lefteqn{\widetilde {\Delta}_{\alpha,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho)} \\ & = & (\gamma_{T}^{(0)}(x_{0}))^{-\alpha-1} \left[-\frac{\alpha \tilde \rho(1+\gamma_{T}^{(0)}(x_{0}))}{[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))][1-\tilde \rho+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]}\frac{T_{n}^{(1)}(K,0,0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \right. \\ & & +\frac{T_{n}^{(1)}(K,-\alpha(1+\gamma_{T}^{(0)}(x_{0}))/\gamma_{T}^{(0)}(x_{0}),0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \left. \right. \\ & &\left.-(1-\tilde \rho)\frac{T_{n}^{(1)}(K,-(\alpha(1+\gamma_{T}^{(0)}(x_{0}))-\tilde \rho)/\gamma_{T}^{(0)}(x_{0}),0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})}\right], \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} \lefteqn{ \widetilde {\Delta}_{\alpha,1,1}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho)} \\ & = & (\gamma_{T}^{(0)}(x_{0}))^{-\alpha-2} \left[ \left( \frac{\alpha+2}{1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))}-\frac{2\alpha+4}{[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{2}} \right.\right. \\ &&\hspace{5cm}\left.\left. + \frac{2\alpha+2}{[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{3}} \right) \frac{T_{n}^{(1)}(K,0,0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \right. \\ & & \left.-(\alpha+1)\frac{T_{n}^{(1)}(K,-\alpha(1+\gamma_{T}^{(0)}(x_{0}))/\gamma_{T}^{(0)}(x_{0}),0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \right. \left. \right. \\ & &\left.+\frac{2\alpha+2}{\gamma_{T}^{(0)}(x)}\frac{T_{n}^{(1)}(K,-\alpha(1+\gamma_{T}^{(0)}(x_{0}))/\gamma_{T}^{(0)}(x_{0}),1|x_{0})}{\overline F(t_{n}|x_{0})f_{X}(x_{0})} \right. \\ & & \left.-\frac{\alpha}{(\gamma_{T}^{(0)}(x_{0}))^{2}}\frac{T_{n}^{(1)}(K,-\alpha(1+\gamma_{T}^{(0)}(x_{0}))/\gamma_{T}^{(0)}(x_{0}),2|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \right], \\ \\ \\ \lefteqn{\widetilde {\Delta}_{\alpha,1,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho)} \\ & = & (\gamma_{T}^{(0)}(x_{0}))^{-\alpha-2} \left[ \left( \frac{1+\alpha(2+\alpha)(1+\gamma_{T}^{(0)}(x_{0}))}{[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{2}} \right. \right. \\ & & \left. -\frac{(1-\tilde \rho)^{2}-\alpha[\tilde \rho(1-\tilde \rho)-2(1+\gamma_{T}^{(0)}(x_{0}))(1-\tilde \rho)]+\alpha^{2}(1+\gamma_{T}^{(0)}(x_{0}))(1-\tilde \rho)}{[1-\tilde \rho+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{2}} \right) \\ & & \times \frac{T_{n}^{(1)}(K,0,0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} -(1+\alpha)\frac{T_{n}^{(1)}(K,-\alpha(1+\gamma_{T}^{(0)}(x_{0}))/\gamma_{T}^{(0)}(x_{0}),0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \\ & & + (\alpha+1)(1-\tilde \rho) \frac{T_{n}^{(1)}(K,-(\alpha(1+\gamma_{T}^{(0)}(x_{0}))-\tilde \rho)/\gamma_{T}^{(0)}(x_{0}),0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \\ & & \left. +\frac{\alpha}{\gamma_{T}^{(0)}(x_{0})} \frac{T_{n}^{(1)}(K,-\alpha(1+\gamma_{T}^{(0)}(x_{0}))/\gamma_{T}^{(0)}(x_{0}),1|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \right. \\ & & \left. - \frac{(\alpha-\tilde \rho)(1-\tilde \rho)}{\gamma_{T}^{(0)}(x_{0})}\frac{T_{n}^{(1)}(K,-(\alpha(1+\gamma_{T}^{(0)}(x_{0}))-\tilde \rho)/\gamma_{T}^{(0)}(x_{0}),1|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \right], \end{array} $$
$$ \begin{array}{@{}rcl@{}} \lefteqn{\widetilde {\Delta}_{\alpha,2,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho)} \\ & = & (\gamma_{T}^{(0)}(x_{0}))^{-\alpha-2} \left[ \left( \frac{1+\alpha+\gamma_{T}^{(0)}(x_{0})}{1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))}-\frac{2(1-\tilde \rho)(1+\gamma_{T}^{(0)}(x_{0})+\alpha)}{1-\tilde \rho+\alpha(1+\gamma_{T}^{(0)}(x_{0}))} \right. \right. \\ & & \left. +\frac{(1+\gamma_{T}^{(0)}(x_{0}))(1-2\tilde \rho)+\alpha(1-\tilde \rho)^{2}}{1-2\tilde \rho+\alpha(1+\gamma_{T}^{(0)}(x_{0}))} \right) \frac{T_{n}^{(1)}(K,0,0|x_{0})}{\overline F(t_{n}|x_{0})f_{X}(x_{0})} \\ & & -(\alpha+\gamma_{T}^{(0)}(x_{0}))\frac{T_{n}^{(1)}(K,-\alpha(1+\gamma_{T}^{(0)}(x_{0}))/\gamma_{T}^{(0)}(x_{0}),0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \\ && +2(1-\tilde \rho)(\alpha+\gamma_{T}^{(0)}(x_{0}))\frac{T_{n}^{(1)}(K,-(\alpha(1+\gamma_{T}^{(0)}(x_{0}))-\tilde \rho)/\gamma_{T}^{(0)}(x_{0}),0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \\ & & \left. -[(1 + \gamma_{T}^{(0)}(x_{0}))(1 - 2\tilde \rho)+(\alpha - 1)(1 - \tilde \rho)^{2}]\frac{T_{n}^{(1)}(K,\!-(\alpha(1 + \gamma_{T}^{(0)}(x_{0})) - 2\tilde \rho)/\gamma_{T}^{(0)}(x_{0}),0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \right] . \end{array} $$

For brevity, the expressions for the third order derivatives are omitted from the paper.

Now let

$$ \begin{array}{@{}rcl@{}} \mathbb U_{n}(\tilde \rho) := \frac{1}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} \left[ \begin{array}{c} T_{n}^{(1)}(K,0,0|x_{0}) \\ T_{n}^{(1)}(K,-\alpha(1+\gamma_{T}^{(0)}(x_{0}))/\gamma_{T}^{(0)}(x),0|x_{0}) \\ T_{n}^{(1)}(K,-(\alpha(1+\gamma_{T}^{(0)}(x_{0}))-\tilde \rho)/\gamma_{T}^{(0)}(x),0|x_{0}) \\ T_{n}^{(1)}(K,-\alpha(1+\gamma_{T}^{(0)}(x_{0}))/\gamma_{T}^{(0)}(x_{0}),1|x_{0}) \\ T_{n}^{(2)}(K|x_{0}) \end{array} \right], \end{array} $$
$$ \begin{array}{@{}rcl@{}} \overline{\mathbb U}(\tilde \rho) := \left[ \begin{array}{c} 1 \\ \frac{1}{1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))} \\ \frac{1}{1-\tilde \rho+\alpha(1+\gamma_{T}^{(0)}(x_{0}))} \\ \frac{\gamma_{T}^{(0)}(x_{0})}{[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{2}} \\ \frac{\gamma_{T}^{(0)}(x_{0})}{\gamma_{Y}^{(0)}(x_{0})} \end{array} \right]. \end{array} $$

Then by Theorem 3

$$ \begin{array}{@{}rcl@{}} \mathbb W_{n}(\tilde \rho) := r_{n}(\mathbb U_{n}(\tilde \rho)-\overline{\mathbb U}(\tilde \rho)) \leadsto N(\lambda \mu(\tilde \rho), {\Sigma}(\tilde \rho)), \end{array} $$

where \(\mu (\tilde \rho )\) a (5 × 1) vector with elements

$$ \begin{array}{@{}rcl@{}} \mu_{1}(\tilde \rho) & = & 0, \\ \mu_{2}(\tilde \rho) & = & -\frac{\alpha \rho_{T}^{(0)}(x_{0})(1+\gamma_{T}^{(0)}(x_{0}))}{\gamma_{T}^{(0)}(x_{0})[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))][1-\rho_{T}^{(0)}(x_{0})+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]}, \\ \mu_{3}(\tilde \rho) & = &-\frac{[\alpha(1+\gamma_{T}^{(0)}(x_{0}))-\tilde \rho]\rho_{T}^{(0)}(x_{0})}{\gamma_{T}^{(0)}(x_{0})[1-\tilde \rho+\alpha(1+\gamma_{T}^{(0)}(x_{0}))][1-\rho_{T}^{(0)}(x_{0})-\tilde \rho+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]}, \\ \mu_{4}(\tilde \rho) & = & \frac{\rho_{T}^{(0)}(x_{0})(1-\rho_{T}^{(0)}(x_{0}))-\alpha^{2}\rho_{T}^{(0)}(x_{0})(1+\gamma_{T}^{(0)}(x_{0}))^{2}}{[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{2}[1-\rho_{T}^{(0)}(x_{0})+\alpha(1+\gamma_{T}^{(0)}(x_{o}))]^{2}} , \\ \mu_{5}(\tilde \rho) & = & \mu, \end{array} $$

where μ is given by Eq. 3.1, apart from the factor λ, and \({\Sigma }(\tilde \rho )\) a (5 × 5) symmetric matrix with elements

$$ \begin{array}{@{}rcl@{}} {\Sigma}_{11}(\tilde \rho) & := & \|K\|_{2}^{2}, \\ {\Sigma}_{21}(\tilde \rho) & := & \frac{\|K\|_{2}^{2}}{1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))}, \\ {\Sigma}_{22}(\tilde \rho) & := & \frac{\|K\|_{2}^{2}}{1+2\alpha(1+\gamma_{T}^{(0)}(x_{0}))}, \\ {\Sigma}_{31}(\tilde \rho) & := & \frac{\|K\|_{2}^{2}}{1-\tilde \rho+\alpha(1+\gamma_{T}^{(0)}(x_{0}))}, \\ {\Sigma}_{32}(\tilde \rho) & := & \frac{\|K\|_{2}^{2}}{1-\tilde \rho+2\alpha(1+\gamma_{T}^{(0)}(x_{0}))}, \\ {\Sigma}_{33}(\tilde \rho) & := & \frac{\|K\|_{2}^{2}}{1-2\tilde \rho+2\alpha(1+\gamma_{T}^{(0)}(x_{0}))}, \\ {\Sigma}_{41}(\tilde \rho) & := & \frac{\gamma_{T}^{(0)}(x_{0})\|K\|_{2}^{2}}{[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{2}}, \\ {\Sigma}_{42}(\tilde \rho) & := & \frac{\gamma_{T}^{(0)}(x_{0})\|K\|_{2}^{2}}{[1+2\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{2}}, \\ {\Sigma}_{43}(\tilde \rho) & := & \frac{\gamma_{T}^{(0)}(x_{0})\|K\|_{2}^{2}}{[1-\tilde \rho+2\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{2}}, \\ {\Sigma}_{44}(\tilde \rho) & := & \frac{2(\gamma_{T}^{(0)}(x_{0}))^{2}\|K\|_{2}^{2}}{[1+2\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{3}}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} {\Sigma}_{51}(\tilde \rho) & := & \frac{\gamma_{T}^{(0)}(x_{0})\|K\|_{2}^{2}}{\gamma_{Y}^{(0)}(x_{0})}, \\ {\Sigma}_{52}(\tilde \rho) & := & \frac{\gamma_{T}^{(0)}(x_{0})\|K\|_{2}^{2}}{\gamma_{Y}^{(0)}(x_{0})[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]}, \\ {\Sigma}_{53}(\tilde \rho) & := & \frac{\gamma_{T}^{(0)}(x_{0})\|K\|_{2}^{2}}{\gamma_{Y}^{(0)}(x_{0})[1-\tilde \rho+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]}, \\ {\Sigma}_{54}(\tilde \rho) & := & \frac{(\gamma_{T}^{(0)}(x_{0}))^{2}\|K\|_{2}^{2}}{\gamma_{Y}^{(0)}(x_{0})[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{2}}, \\ {\Sigma}_{55}(\tilde \rho) & := & \frac{\gamma_{T}^{(0)}(x_{0})\|K\|_{2}^{2}}{\gamma_{Y}^{(0)}(x_{0})}. \\ \end{array} $$

We have

$$ \begin{array}{@{}rcl@{}} r_{n} \left[ \begin{array}{c} -\widetilde {\Delta}_{\alpha,1}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) \\ -\widetilde {\Delta}_{\alpha,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) \\ \frac{T_{n}^{(1)}(K,0,0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} -1 \\ \frac{T_{n}^{(2)}(K|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} -\frac{\gamma_{T}^{(0)}(x_{0})}{\gamma_{Y}^{(0)}(x_{0})} \end{array} \right] = B(\tilde \rho) \mathbb W_{n}(\tilde \rho) \leadsto N(\lambda B(\tilde \rho)\mu(\tilde \rho),B(\tilde \rho){\Sigma}(\tilde \rho)B(\tilde \rho)^{T}), \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} B(\tilde \rho) := \left[ \begin{array}{ccccc} b_{11}(\tilde \rho) & -(\gamma_{T}^{(0)}(x_{0}))^{-\alpha-1} & 0 & (\gamma_{T}^{(0)}(x_{0}))^{-\alpha-2} & 0 \\ b_{21}(\tilde \rho)& -(\gamma_{T}^{(0)}(x_{0}))^{-\alpha-1}& (\gamma_{T}^{(0)}(x_{0}))^{-\alpha-1}(1-\tilde \rho) & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right], \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} b_{11}(\tilde \rho ) & := & \frac{\alpha(1+\gamma_{T}^{(0)}(x_{0}))}{(\gamma_{T}(x_{0}))^{\alpha+1}[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{2}}, \\ b_{21}(\tilde \rho) & :=& \frac{\alpha \tilde \rho(1+\gamma_{T}^{(0)}(x_{0}))}{(\gamma_{T}(x_{0}))^{\alpha+1}[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))][1-\tilde \rho+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]}. \end{array} $$

As for \(\overline {\Delta }_{\alpha ,u,v}(\gamma _{T}^{(0)}(x_{0}),0;\tilde \rho )\), u,v = 1,2, we have by Theorems 1, 3 and 4, and because \(|\widetilde {\Delta }_{\alpha ,u,v,w}(\gamma ,\delta ;\tilde \rho )| \le M_{u,v,w}\), in some open neighborhood of \((\gamma _{T}^{(0)}(x_{0}),0)\) with \(M_{u,v,w}=O_{\mathbb P}(1)\), u,v,w = 1,2, that \(\overline {\Delta }_{\alpha ,u,v}(\gamma _{T}^{(0)}(x_{0}),0;\tilde \rho ) \stackrel { P}{ \to } {\Delta }_{\alpha ,u,v}(\gamma _{T}^{(0)}(x_{0}),0;\tilde \rho )\), where

$$ \begin{array}{@{}rcl@{}} \lefteqn{{\Delta}_{\alpha,1,1}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) := (\gamma_{T}^{(0)}(x_{0}))^{-\alpha-2} \frac{1+\alpha^{2}(1+\gamma_{T}^{(0)}(x_{0}))^{2}}{[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{3}},} \\ \lefteqn{{\Delta}_{\alpha,1,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho)} \\ & & := (\gamma_{T}^{(0)}(x_{0}))^{-\alpha-2} \frac{\tilde \rho(1-\tilde \rho)[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))+\alpha^{2}(1+\gamma_{T}^{(0)}(x_{0}))^{2}]+\alpha^{3}\tilde \rho (1+\gamma_{T}^{(0)}(x_{0}))^{3}}{[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{2}[1-\tilde \rho+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]^{2}}, \\ \lefteqn{{\Delta}_{\alpha,2,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho)} \\ & & := (\gamma_{T}^{(0)}(x_{0}))^{-\alpha-2} \frac{(1-\tilde \rho)\tilde \rho^{2}+\alpha \tilde \rho^{2}(1+\gamma_{T}^{(0)}(x_{0}))[\alpha(1+\gamma_{T}^{(0)}(x_{0}))-\tilde \rho]}{[1+\alpha(1+\gamma_{T}^{(0)}(x_{0}))][1-\tilde \rho+\alpha(1+\gamma_{T}^{(0)}(x_{0}))][1-2\tilde \rho+\alpha(1+\gamma_{T}^{(0)}(x_{0}))]}. \end{array} $$

Let

$$ \begin{array}{@{}rcl@{}} {\Delta} (\tilde \rho):= \left[ \begin{array}{cc} {\Delta}_{\alpha,1,1}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) & {\Delta}_{\alpha,1,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) \\ {\Delta}_{\alpha,1,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) & {\Delta}_{\alpha,2,2}(\gamma_{T}^{(0)}(x_{0}),0;\tilde \rho) \end{array} \right] \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} \breve {\Delta}(\tilde \rho) := \left[ \begin{array}{cc} {\Delta}(\tilde \rho) & 0 \\ 0 & I_{2} \end{array} \right], \end{array} $$

where I2 is the (2 × 2) identity matrix. It can be verified that \({\Delta }(\tilde \rho )\) is positive definite and thus invertible. Then, by Lemma 5.2 in Chapter 6 of Lehmann and Casella (1998), we have

$$ \begin{array}{@{}rcl@{}} r_{n}\left[ \begin{array}{c} \widehat \gamma_{T,n}(x_{0}|\tilde \rho)-\gamma_{T}^{(0)}(x_{0}) \\ \widehat \delta_{T,n}(x_{0}|\tilde \rho) \\ \frac{T_{n}^{(1)}(K,0,0|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} - 1 \\ \frac{T_{n}^{(2)}(K|x_{0})}{\overline F_{T}(t_{n}|x_{0})f_{X}(x_{0})} -\frac{\gamma_{T}^{(0)}(x_{0})}{\gamma_{Y}^{(0)}(x_{0})} \end{array} \right] \leadsto N(\lambda \breve {\Delta}^{-1}(\tilde \rho)B(\tilde \rho)\mu(\tilde \rho),\breve {\Delta}^{-1}(\tilde \rho)B(\tilde \rho){\Sigma}(\tilde \rho)B(\tilde \rho)^{T} \breve {\Delta}^{-1}(\tilde \rho)). \end{array} $$

Finally, a straightforward application of the delta method gives

$$ \begin{array}{@{}rcl@{}} r_{n}(\widehat \gamma_{Y,n}(x_{0}|\tilde \rho)-\gamma_{Y}^{(0)}(x_{0})) \leadsto N(\lambda L^{T}\breve {\Delta}^{-1}(\tilde \rho)B(\tilde \rho)\mu(\tilde \rho),L^{T}\breve {\Delta}^{-1}(\tilde \rho)B(\tilde \rho){\Sigma}(\tilde \rho)B(\tilde \rho)^{T} \breve {\Delta}^{\!-1}(\tilde \rho)L), \end{array} $$

with \(L^{T} := [\gamma _{Y}^{(0)}(x_{0})/\gamma _{T}^{(0)}(x_{0}),0,\gamma _{Y}^{(0)}(x_{0}),-(\gamma _{Y}^{(0)}(x_{0}))^{2}/\gamma _{T}^{(0)}(x_{0})]\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dierckx, G., Goegebeur, Y. & Guillou, A. Local Robust Estimation of Pareto-Type Tails with Random Right Censoring. Sankhya A 83, 70–108 (2021). https://doi.org/10.1007/s13171-019-00169-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-019-00169-0

Keywords and phrases

AMS (2000) subject classification

Navigation