Skip to main content

Advertisement

Log in

Metrics for Evaluating Inundation Impacts on the Decomposer Communities in a Southern California Coastal Salt Marsh

  • Wetlands and Climate Change
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Southern California coastal wetlands are heavily impacted by urbanization and are under increased inundation stress due to sea level rise (SLR). This study evaluated the impacts of inundation on decomposition rates and sediment decomposer communities (invertebrates, fungi, and bacteria) by manipulating inundation using a marsh organ. Under increased inundation, invertebrate diversity decreased, and plant litter decomposition was reduced by excluding fungi and invertebrates from substrates using litter bags, indicating that all three decomposer guilds are important. This study showed significant impacts of increased inundation on bacterial, fungal and invertebrate community structure and diversity, yet only modest effects on sulfate reduction and decomposition rates, suggesting a degree of resilience or functional redundancy in the decomposer community. While the marsh organ successfully simulated increased inundation, it also created experimental ‘bottle effects’ that may have obscured inundation treatment effects and altered communities from the natural marsh. In our study, invertebrates were most sensitive to inundation, while bacteria appeared to be more resistant. This has implications for how decomposition and associated biogeochemical and ecological processes might change in the face of increased inundation due to SLR and suggests that marsh organs may be less suitable for investigating microbial communities compared with plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen AO, Feddema JJ (1996) Wetland loss and substitution by the section 404 permit program in Southern California, USA. Environmental Management 20:263–274

    Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience , and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America 105:11512–11519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allison SD, Hanson CA, Treseder KK (2007) Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biology and Biochemistry 39:1878–1887. https://doi.org/10.1016/j.soilbio.2007.02.001

    Article  CAS  Google Scholar 

  • Baldwin AH, Mendelssohn IA (1998) Effects of salinity and water level on coastal marshes: an experimental test of disturbance as a catalyst for vegetation change. Aquatic Botany 61:255–268. https://doi.org/10.1016/S0304-3770(98)00073-4

    Article  Google Scholar 

  • Benner R, Newell SY, Maccubbin AE, Robert E, Hodson RE (1984) Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments. Applied and Environmental Microbiology 48:36–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertness MD, Ewanchuk PJ, Silliman BR (2002) Anthropogenic modification of New England salt marsh landscapes. Proceedings of the National Academy of Sciences of the United States of America 99:1395–1398. https://doi.org/10.1073/pnas.022447299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bik HM, Halanych KM, Sharma J, Thomas WK (2012) Dramatic shifts in benthic microbial eukaryote communities following the Deepwater horizon oil spill. PLoS One 7:e38550. https://doi.org/10.1371/journal.pone.0038550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair EM, Allen BJ, Whitcraft CR (2013) Evaluating monoculture versus polyculture planting regimes in a newly-restored Southern California salt marsh. Bulletin of the Southern California Academy of Sciences 112:161–175

    Google Scholar 

  • Bouillon S, Boschker HTS (2006) Bacterial carbon sources in coastal sediments: a review based on stable isotope data of biomarkers. Biogeosciences Discussions 2:1617–1644. https://doi.org/10.5194/bgd-2-1617-2005

    Article  Google Scholar 

  • Buchan A, Newell SY, Butler M, Erin J, Hollibaugh JT, Moran MA et al (2003) Dynamics of bacterial and fungal communities on decaying salt marsh grass. Applied and Environmental Microbiology 69:6676–6687. https://doi.org/10.1128/AEM.69.11.6676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buesing N, Gessner MO (2006) Benthic bacterial and fungal productivity and carbon turnover in a freshwater marsh. Applied and Environmental Microbiology 72:596–605. https://doi.org/10.1128/AEM.72.1.596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke DJ, Hamerlynck EP, Hahn D (2002) Interactions among plant species and microorganisms in salt marsh sediments. Applied and Environmental Microbiology 68:1157–1164. https://doi.org/10.1128/AEM.68.3.1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. https://doi.org/10.1093/bioinformatics/btp636

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010b) QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303.QIIME

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cayan DR, Bromirski PD, Hayhoe K, Tyree M, Dettinger MD, Flick RE (2007) Climate change projections of sea level extremes along the California coast. Climatic Change 87:57–73. https://doi.org/10.1007/s10584-007-9376-7

    Article  Google Scholar 

  • Cayan DR, Tyree M, Hidalgo H, Das T, Maurer E, Bromirski P et al (2009) Climate change scenarios and sea level rise estimates for the California 2008 climate change scenarios assessment. California Climatic Change Center 4:1–47

    Google Scholar 

  • Chambers LG, Guevara R, Boyer JN, Troxler TG, Davis SE (2016) Effects of salinity and inundation on microbial community structure and function in a mangrove peat soil. Wetlands 36:361–371. https://doi.org/10.1007/s13157-016-0745-8

    Article  Google Scholar 

  • Cherry JA, McKee KL, Grace JB (2009) Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. Journal of Ecology 97:67–77. https://doi.org/10.1111/j.1365-2745.2008.01449.x

    Article  Google Scholar 

  • Choi Y, Hsieh Y, Wang Y, Robinson L (2001) Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes. Global Biogeochem Cycles 15:311–319

  • Coffin RB, Velinsky DJ, Devereux R, Price WA, Cifuentes LA (1990) Stable carbon isotope analysis of nucleic acids to trace sources of dissolved substrates used by estuarine bacteria. Appl Environ Microbiol 56:2012–2020

  • Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH (2009) T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinformatics 10:171. https://doi.org/10.1186/1471-2105-10-171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Currin CA, Newell SY, Paerl HW (1995) The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Marine Ecology Progress Series 121:99–116. https://doi.org/10.3354/meps121099

    Article  Google Scholar 

  • Darjany LE, Whitcraft CR, Dillon JG (2014) Lignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing. Frontiers in Microbiology 5:263. https://doi.org/10.3389/fmicb.2014.00263

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLaune RD, Pezeshki SR, Patrick WH (1987) Response of coastal plants to increase in submergence and salinity. Journal of Coastal Research 3:535–546

    Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon JG, Miller S, Bebout B, Hullar M, Pinel N, Stahl DA (2009) Spatial and temporal variability in a stratified hypersaline microbial mat community. FEMS Microbiology Ecology 68:46–58. https://doi.org/10.1111/j.1574-6941.2009.00647.x

    Article  CAS  PubMed  Google Scholar 

  • Donnelly JP, Bertness MD (2001) Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences of the United States of America 98:14218–14223. https://doi.org/10.1073/pnas.251209298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson RL, Buckley EN, Palumbo AV (1984) Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol 47:49–55. https://doi.org/10.1128/AEM.47.1.49-55.1984

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2:113–118 Available at: http://www.ncbi.nlm.nih.gov/pubmed/8180733

    CAS  PubMed  Google Scholar 

  • Gedan KB, Silliman BR, Bertness MD (2009) Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science 1:117–141. https://doi.org/10.1146/annurev.marine.010908.163930

    Article  PubMed  Google Scholar 

  • Gribsholt B, Kristensen E (2002) Effects of bioturbation and plant roots on salt marsh biogeochemistry: a mesocosm study. Marine Ecology Progress Series 241:71–87

    Google Scholar 

  • Griggs G, Arvai J, Cayan D, DeConto R, Fox J, Fricker H et al (2017) Rising seas in California: an update on sea-level rise science. California Ocean Science Trust. Available via https://digitalcommons.humboldt.edu/cgi/viewcontent.cgi?article=1005&context=hsuslri_state

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:1–9

    Google Scholar 

  • Heberger M, Cooley H, Herrera P, Gleick PH, Moore E (2009) The impacts of sea-level rise on the California coast. Prepared by: California Climate Change Center, 101. Available via https://tamug-ir.tdl.org/bitstream/handle/1969.3/29130/sea-level-rise.pdf?sequence=1

  • Hemminga HA, Buth GJC (1991) Decomposition in salt marsh ecosystems of the S .W . Netherlands: the effects of biotic and abiotic factors. Vegetation 92:73–83

    Google Scholar 

  • Henriques IS, Alves A, Tacão M, Almeida A, Cunha Â, Correia A (2006) Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuarine, Coastal and Shelf Science 68:139–148. https://doi.org/10.1016/j.ecss.2006.01.015

    Article  Google Scholar 

  • Hines ME, Knollmeyer SL, Tugel JB (1989) Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh. Limnology and Oceanography 34:578–590

    CAS  Google Scholar 

  • Howarth RW, Teal JM (1979) Sulfate reduction in a New England salt marsh. American Society of Limnology and Oceanography 24:999–1013

    CAS  Google Scholar 

  • Jackson KL, Whitcraft CR, Dillon JG (2014) Diversity of Desulfobacteriacea and overall activity of sulfate-reducing microorganisms in and around a salt pan in a Southern California coastal wetland. Wetlands 34:969–977

    Google Scholar 

  • James-Pirri M-J, Roman CT, Heltshe JF (2007) Power analysis to determine sample size for monitoring vegetation change in salt marsh habitats. Wetlands Ecology and Management 15:335–345. https://doi.org/10.1007/s11273-007-9034-x

    Article  Google Scholar 

  • Janousek CN, Buffington KJ, Thorne KM, Guntenspergen GR, Takekawa JY, Dugger BD (2016) Potential effects of sea-level rise on plant productivity: species-specific responses in Northeast Pacific tidal marshes. Marine Ecology Progress Series 548:111–125. https://doi.org/10.3354/meps11683

    Article  Google Scholar 

  • Janousek CN, Buffington KJ, Guntenspergen GR, Thorne KM, Dugger BD, Takekawa JY (2017) Inundation, vegetation, and sediment effects on litter decomposition in Pacific coast tidal marshes. Ecosystems 20:1296–1310. https://doi.org/10.1007/s10021-017-0111-6

    Article  CAS  Google Scholar 

  • Keller JK, Takagi KK, Brown ME, Stump KN, Takahashi CG, Joo W, Au KL, Calhoun CC, Chundu RK, Hokutan K, Mosolf JM, Roy K (2012) Soil organic carbon storage in restored salt marshes in Huntington Beach California. Bulletin of the Southern California Academy of Sciences 111:153–161

    Google Scholar 

  • King GM (1988) Patterns of sulfate reduction and the sulfur cycle in a South Carolina salt marsh. Limnology and Oceanography 33:376–390

    CAS  Google Scholar 

  • Kirby CJ, Gosselink JG (1976) Primary production in a Louisiana Gulf Coast Spartina alterniflora Marsh. Ecology 57:1052–1059

    Google Scholar 

  • Kirwan ML, Guntenspergen GR (2012) Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. Journal of Ecology 100:764–770. https://doi.org/10.1111/j.1365-2745.2012.01957.x

    Article  Google Scholar 

  • Kirwan ML, Langley JA, Guntenspergen GR, Megonigal JP (2013) The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes. Biogeosciences 10:1869–1876. https://doi.org/10.5194/bg-10-1869-2013

    Article  CAS  Google Scholar 

  • Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America 108(Suppl):4578–4585. https://doi.org/10.1073/pnas.1000081107

    Article  PubMed  Google Scholar 

  • Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology 22:5271–5277. https://doi.org/10.1111/mec.12481

    Article  CAS  PubMed  Google Scholar 

  • Kostka JE, Gribsholt B, Petrie E, Dalton D, Skelton H, Kristensen E (2002) The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments. Limnology and Oceanography 47:230–240. https://doi.org/10.4319/lo.2002.47.1.0230

    Article  CAS  Google Scholar 

  • Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R (2011) Using QIIME to analyze 16S rRNA gene sequences from microbial communites. Current Protocols in Bioinformatics. https://doi.org/10.1002/0471250953.bi1007s36

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Langley AJ, Mozdzer TJ, Shepard KA, Hagerty SB, Megonigal PJ (2013) Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise. Global Change Biology 19:1495–1503. https://doi.org/10.1111/gcb.12147

    Article  Google Scholar 

  • Levin LA, Talley TS, Hewitt J (1998) Macrobenthos of Spartina foliosa (Pacific Cordgrass) salt marshes in southern California: community structure and comparison to a pacific mudflat and a Spartina alterniflora (Atlantic smooth Cordgrass) marsh. Estuaries 21:129–144. https://doi.org/10.2307/1352552

    Article  Google Scholar 

  • Levine JM, Brewer JS, Bertness MD (1998) Nutrients, competition and plant zonation in a New England salt marsh. Journal of Ecology 86:285–292. https://doi.org/10.1046/j.1365-2745.1998.00253.x

    Article  Google Scholar 

  • Liu W, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology 63:4516–4522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. The ISME Journal 5:169–172. https://doi.org/10.1038/ismej.2010.133

    Article  PubMed  Google Scholar 

  • Maheshwari R (2016) Fungi: experimental methods in biology. CRC Press, Boca Raton

  • Méndez N (2002) Annelid assemblages in soft bottoms subjected to human impact in the Urías estuary (Sinaloa, Mexico). Oceanologica Acta 25:139–147. https://doi.org/10.1016/S0399-1784(02)01193-3

    Article  Google Scholar 

  • Michener WK, Blood ER, Bildstein KL, Brinson MM, Gardner LR (1997) Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecological Applications 7:770–801

    Google Scholar 

  • Middelburg JJ, Nieuwenhuize J, Lubberts RK, Van De Plassche O (1997) Organic carbon isotope systematics of coastal marshes. Estuarine, Coastal and Shelf Science 45:681–687. https://doi.org/10.1006/ecss.1997.0247

    Article  CAS  Google Scholar 

  • Milbrink G (1983) An improved environmental index based on the relative abundance of Oligochaetes species. Hydrobiologia 102:89–97

    Google Scholar 

  • Minello TJ, Able KW, Weinstein MP, Hays CG (2003) Salt marshes as nurseries for nekton: testing hypotheses on density, growth and survival through meta-analysis. Marine Ecology Progress Series 246:39–59

    Google Scholar 

  • Mitsch WJ, Gosselink (2007) Wetlands, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Mohamed DJ, Martiny JBH (2011) Patterns of fungal diversity and composition along a salinity gradient. International Society for Microbial Ecology Journal 5:379–388. https://doi.org/10.1038/ismej.2010.137

    Article  Google Scholar 

  • Morris T (2007) In: Fahey TJ, Knapp AK (eds) Principles and standards for measuring primary production. Oxford University Press Inc., New York

    Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon R (2002) Responses of coastal wetlands to rising sea level. The Ecological Society of America 83:2869–2877

    Google Scholar 

  • Morris JT, Sundberg K, Hopkinson CS (2013) Salt marsh primary production and its response to relative sea level and nutrients in estuaries at Plum Island, Massachusets, and North Inlet, South Carolina, USA. Oceanography 26:78–84

    Google Scholar 

  • Moss JA, Nocker A, Lepo JE, Snyder RA (2006) Stability and change in estuarine biofilm bacterial community diversity. Applied and Environmental Microbiology 72:5679–5688. https://doi.org/10.1128/AEM.02773-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudd SM, Howell SM, Morris JT (2009) Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science 82:377–389. https://doi.org/10.1016/j.ecss.2009.01.028

    Article  CAS  Google Scholar 

  • Mueller P, Jensen K, Megonigal JP (2016) Plants mediate soil organic matter decomposition in response to sea level rise. Global Change Biology 22:404–414. https://doi.org/10.1111/gcb.13082

    Article  PubMed  Google Scholar 

  • Mueller P, Schile-Beers LM, Mozdzer TJ, Chmura GL, Dinter T, Kuzyakov Y, de Groot AV, Esselink P, Smit C, D'Alpaos A, Ibáñez C, Lazarus M, Neumeier U, Johnson BJ, Baldwin AH, Yarwood SA, Montemayor DI, Yang Z, Wu J, Jensen K, Nolte S (2018) Global-change effects on early-stage decomposition processes in tidal wetlands-implications from a global survey using standardized litter. Biogeosciences 15:3189–3202. https://doi.org/10.5194/bg-15-3189-2018

    Article  CAS  Google Scholar 

  • Mueller P, Granse D, Nolte S, Weingartner M, Hoth S, Jensen K (2020) Unrecognized controls on microbial functioning in blue carbon ecosystems: the role of mineral enzyme stabilization and allochthonous substrate supply. Ecology and Evolution 10:998–1011. https://doi.org/10.1002/ece3.5962

    Article  PubMed  PubMed Central  Google Scholar 

  • Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Archives of Microbiology 164:165–172 Available at: http://www.ncbi.nlm.nih.gov/pubmed/7545384

    CAS  PubMed  Google Scholar 

  • Navas-Molina J, Peralta-Sanchez J, Gonzalez A, Mcmurdie PJ, Xu Z, Ursell LK et al (2013) Advancing our understanding of the human microbiome using QIIME. Methods in Enzymology. https://doi.org/10.1016/B978-0-12-407863-5.00019-8.Advancing

  • Nelson JA, Stallings CD, Landing WM, Chanton J (2013) Biomass transfer subsidizes nitrogen to offshore food webs. Ecosystems 16:1130–1138. https://doi.org/10.1007/s10021-013-9672-1

    Article  CAS  Google Scholar 

  • Newell SY, Porter D (2000) Microbial secondary production from salt marsh-grass shoots, and its known and potential fates. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers, New York, pp 159–185

    Google Scholar 

  • Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH (2008) Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics 2008:193–201. https://doi.org/10.4137/EBO.S653

    Article  Google Scholar 

  • Orson R, Panageotou W, Leatherman SP (1985) Response of tidal salt marshes of the U.S. Atlantic and Gulf coasts of rising sea levels. The Journal of Coastal Research 1:29–37

    Google Scholar 

  • Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology: An Annual Review 16:229–311

    Google Scholar 

  • Peterson BJ (1999) Stable isotopes as tracers of organic matter input and transfer in benthic food webs: a review. Acta Oecologica 20:479–487. https://doi.org/10.1016/S1146-609X(99)00120-4

    Article  Google Scholar 

  • Peterson BJ, Howarth RW, Garritt RH (1985) Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science (80-. ) 227:1361–1363. https://doi.org/10.1126/science.227.4692.1361

  • Pilloni G, Granitsiotis MS, Engel M, Lueders T (2012) Testing the limits of 454 pyrotag sequencing: reproducibility, quantitative assessment and comparison to T-RFLP fingerprinting of aquifer microbes. PLoS One 7:e40467. https://doi.org/10.1371/journal.pone.0040467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rader DN (1984) Salt-marsh benthic invertebrates: small-scale patterns of distribution and abundance. Estuaries 7:413–420

    Google Scholar 

  • Reed DJ (1995) The response of coastal marshes to sea-level rise: survival or submergence? Earth Surface Processes and Landforms 20:39–48. https://doi.org/10.1002/esp.3290200105

    Article  Google Scholar 

  • Rietl AJ, Overlander ME, Nyman AJ, Jackson CR (2016) Microbial community composition and extracellular enzyme activities associated with Juncus roemerianus and Spartina alterniflora vegetated sediments in Louisiana saltmarshes. Microbial Ecology 71:290–303. https://doi.org/10.1007/s00248-015-0651-2

    Article  CAS  PubMed  Google Scholar 

  • Sanders BF, Arega F, Sutula M (2005) Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland. Water Research 39:3394–3408. https://doi.org/10.1016/j.watres.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  • Sarda R, Foreman K, Valiela I (1995) Macroinfauna of a Southern New England salt marsh: seasonal dynamics and production. Marine Biology 121:431–445. https://doi.org/10.1007/BF00349452

    Article  Google Scholar 

  • Schoch CL, Seifert K a, Huhndorf S, Robert V, Spouge JL, Levesque CA et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109:1–6. https://doi.org/10.1073/pnas.1117018109

    Article  Google Scholar 

  • Silliman BR, Bertness MD (2004) Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conservation Biology 18:1424–1434

    Google Scholar 

  • Subrahmanyam CB, Kruczynski WL, Drake SH (1976) Studies on the animal communities in two North Florida salt marshes. Bulletin of Marine Science 26:172–195

    Google Scholar 

  • Takekawa JY, Woo I, Athearn ND, Demers S, Gardiner RJ, Perry WM, Ganju NK, Shellenbarger GG, Schoellhamer DH (2010) Measuring sediment accretion in early tidal marsh restoration. Wetlands Ecology and Management 18:297–305. https://doi.org/10.1007/s11273-009-9170-6

    Article  Google Scholar 

  • Torzilli AP, Sikaroodi M, Chalkley D, Gillevet PM (2006) A comparison of fungal communities from four salt marsh plants using automated ribosomal intergenic spacer analysis (ARISA). Mycologia 98:690–698

    CAS  PubMed  Google Scholar 

  • Ulrich GA, Krumholz LR, Suflita JM (1997) A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides. Applied and Environmental Microbiology 63:1627–1630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dyke E, Wasson K (2005) Historical estuary: 150 years of ecology of a Central California habitat change. Estuaries 28:173–189

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH (2004). Ecological linkages between aboveground and belowground biota. Science (80-. ) 304:1629–1633. https://doi.org/10.1126/science.1094875

  • Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C, Zaneveld JR, Vázquez-Baeza Y, Birmingham A, Hyde ER, Knight R (2017) Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5:1–18. https://doi.org/10.1186/s40168-017-0237-y

    Article  Google Scholar 

  • Westrich JT, Berner RA (1984) The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnology and Oceanography 29:236–249. https://doi.org/10.4319/lo.1984.29.2.0236

    Article  CAS  Google Scholar 

  • Whitcraft CR, Levin LA (2007) Regulation of benthic algal and animal communities by salt marsh plants: impact of shading. Ecological Society of America 88:904–917

    Google Scholar 

  • Whitcraft CR, Levin LA, Talley D, Crooks JA (2008) Utilization of invasive tamarisk by salt marsh consumers. Oecologia 158:259–272. https://doi.org/10.1007/s00442-008-1144-5

    Article  PubMed  Google Scholar 

  • White DA, Weiss TE, Trapani JM, Thien LB (1978) Productivity and decomposition of the dominant salt Marsh plants in Louisiana. Ecology 59:751–759

    Google Scholar 

  • Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C et al (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Google Scholar 

  • Wieder RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecological Society of America 63:1636–1642

    Google Scholar 

  • Wolsing M, Priemé A (2004) Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments. FEMS Microbiology Ecology 48:261–271. https://doi.org/10.1016/j.femsec.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  • Zedler JB, Adam P (2002) Saltmarshes. Handbook of Ecological Restoration 2:238–266

    Google Scholar 

  • Zilkoski DB, Richards JH, Young GM (1992) Results of the general adjustment of the North American vertical datum of 1988. Surveying and Land Information Systems 52:133–149

    Google Scholar 

Download references

Acknowledgments

We want to acknowledge Dr. Jason Keller for all of his help and insights with the biogeochemical cycles of the salt marshes and decomposition rates, Justyn Hinricher for his help with building marsh organs and sample collections, Elizabeth Harrison for help with the litter bags, Ryan Freedman for assistance in the field, and two anonymous reviewers at Wetlands. In addition, we acknowledge all of the graduate and undergraduate students who have helped on this project: Megan Rodela, Lindsay Darjany, Karen Jackson, Priscilla Miranda, Michelle Levish, Tanya Asef, Anita Arenas, Cuper Ramirez, Kylle Roy, and Tanya Marquez. We are very thankful to the Huntington Beach Wetlands Conservancy for allowing us access to their property. We would also like to acknowledge the sources of funding for this project: CSU Council on Ocean Affairs, Science & Technology award COAST-GDP-2014-007 (to JD & CW) and CSUCOAST-MCLNAT-CSULB-AY1314 award (to NM), CSULB Donald Reish Scholarship (to NM), Southern California Academy of Sciences (to NM), and Southern California Tuna Club (to NM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse G. Dillon.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Abiotic factors measured (a) continuously by dataloggers and (bd) manually during every quarterly sample collection. Error bars represent standard deviation. (PNG 436 kb)

High Resolution Image (TIFF 14089 kb)

ESM 2

Stacked bar graphs showing (a) bacteria, (b) fungi, and (c) invertebrate relative abundance. (PNG 949 kb)

High Resolution Image (TIF 16375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLain, N., Camargo, L., Whitcraft, C.R. et al. Metrics for Evaluating Inundation Impacts on the Decomposer Communities in a Southern California Coastal Salt Marsh. Wetlands 40, 2443–2459 (2020). https://doi.org/10.1007/s13157-020-01361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-020-01361-x

Keywords

Navigation