Skip to main content

Advertisement

Log in

Depositional and diagenetic studies of the middle Jurassic Samana Suk Formation in the Trans Indus Ranges and western extension of Hill Ranges, Pakistan: an integrated sedimentological and geochemical approach

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The middle Jurassic Samana Suk Formation is well exposed in Himalayan foreland fold and thrust belt forming a good hydrocarbon reservoir of the Indus Basin; however, the combined sedimentological and geochemical studies are not conducted so far. An integrated approach using field, petrographic, geochemical, and isotopic studies was used to better understand the depositional and diagenetic processes within the formation. The formation is predominantly composed of thin to medium-bedded limestone with intercalation of shale. Field observations reveal sedimentary and diagenetic features such as cross bedding, sole marks, ripple marks, convolute bedding, stylolites, dissolution marks and patchy dolomitization. Microfacies associations include mudflat microfacies associations (mudstone MF-1, dolo-mudstone MF-2), lagoonal microfacies associations (siliciclastic bio-packstone MF-3, peloidal bioclastic packstone MF-4, bioclastic wackestone MF-5, and peloidal wackestone MF-6), barrier/shoal microfacies association (peloidal grainstone MF-7, ooidal–peloidal bioclastic grainstone MF-8, ooidal grainstone MF-9, and bioclastic peloidal grainstone MF-10). The above-mentioned microfacies associations suggest the deposition in the ramp settings (mudflats, lagoonal and shoal). The diagenetic features include: micritization, mechanical/chemical compaction, dissolution, neomorphism, cementation, dolomitization and fracturing. Selective replacement of grain dominated facies represents fabric retentive replacive dolomite RD-I formed at the early phase, followed by matrix replacive dolomite RD-II. Late-stage diagenetic alteration is marked by fabric-destructive dolomite RD-III. Geochemical data show a consistent decrease in salinity from the early to late diagenetic phases characterized by elevated Na and K concentration and reduced Fe and Mn concentration. Furthermore, stable isotopic data of limestone and dolomite phases show non-depleted δ13 C values ranging from + 0.26 to + 1.86‰ VPDB suggesting no external supply of carbon after the deposition of the carbonate units. The non-depleted δ18 O values ranging from − 1.96 to − 0.45‰ VPDB of dolomite phases represents seawater signatures, and hence may have formed in surface processes of marine water in mudflat settings/evaporitic conditions. Paleogeographically, Samana Suk Formation exhibits similar depositional conditions with the western coastline of the Tethys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

Availability of data and materials of this article shall be routed by the subscription mode.

References

  • Abdelhady AA, Kassab W, Aly MF (2019) Shoal environment as a biodiversity hotspot: a case from the Barremian–Albian strata of Gabal Lagama (North Sinai, Egypt). J Afr Earth Sc 160:103643

    Article  Google Scholar 

  • Ahsan N, Chaudhry MN (2008) Geology of Hettangian to middle Eocene Rocks Of Hazara And Kashmir basins, Northwest lesser Himalayas, Pakistan. Geol Bull Panjab Univ 43:131–152

    Google Scholar 

  • Aleali M, Rahimpour-Bonab M-H, Jahani D (2013) Environmental and sequence stratigraphic implications of anhydrite textures: a case from the lower Triassic of the central Persian gulf. J Asian Earth Sci 75:110–125

    Article  Google Scholar 

  • Ali F, Qiang J, Ahmad S, Khan S, Hanif M, Jan IU (2019) Sedimentological and geochemical analysis of the Middle Jurassic Shinawari Formation, Upper Indus Basin, Pakistan: implications for palaeoenvironmental and hydrocarbon assessment. Arab J Sci Eng 44(7):6465–6487. https://doi.org/10.1007/s13369-019-03778-x

    Article  CAS  Google Scholar 

  • Ali F, Haneef M, Anjum MN, Hanif M, Khan S (2013) Microfacies analysis and sequence stratigraphic modeling of the Samana Suk Formation, Chichali Nala, Trans Indus Ranges, Punjab, Pakistan. J Himal Earth Sci 46:41–53

    Google Scholar 

  • Al-Mojel A, Dera G, Razin P, Le-Nindre YM (2018) Carbon and oxygen isotope stratigraphy of Jurassic platform carbonates from Saudi Arabia: Implications for diagenesis, correlations and global paleoenvironmental changes. Palaeogeogr Palaeoclimatol Palaeoecol 511:388–402

    Article  Google Scholar 

  • Awais M, Hanif M, Jan IU, Ishaq M, Khan MY (2020) Eocene carbonate microfacies distribution of the Chorgali Formation, Gali Jagir, Khair-e-Murat Range, Potwar Plateau, Pakistan: approach of reservoir potential using outcrop analogue. Arab J Geosci 13:1–18

    Article  Google Scholar 

  • Baniak GM, Amskold L, Konhauser KO, Muehlenbachs K, Pemberton SG, Gingras MK (2014) Sabkha and burrow-mediated dolomitization in the Mississippian Debolt Formation, northwestern Alberta, Canada. Ichnos 21:158–174

    Article  Google Scholar 

  • Bilal A, Yang R, Fan A, Mughal MS, Li Y, Basharat M, Farooq M (2022) Petrofacies and diagenesis of Thanetian Lockhart Limestone in the Upper Indus Basin (Pakistan): implications for the Ceno-Tethys Ocean. Carbonates Evaporites 37:78. https://doi.org/10.1007/s13146-022-00823-z

    Article  Google Scholar 

  • Brand U (1990) Chemical diagenesis and dolomitization of Paleozoic high-Mg calcite crinoids. Carbonates Evaporites 5:179–196

    Article  Google Scholar 

  • Brigaud B, Durlet C, Deconinck JF, Vincent B, Thierry J, Trouiller A (2009) The origin and timing of multiphase cementation in carbonates: impact of regional scale geodynamic events on the middle jurassic limestones diagenesis (Paris Basin, France). Sediment Geol 222:161–180

    Article  CAS  Google Scholar 

  • Burg JP (2018) Geology of the onshore makran accretionary wedge: synthesis and tectonic interpretation. Earth Sci Rev 185:1210–1231

    Article  Google Scholar 

  • Craig J, Hakhoo N, Bhat GM, Hafiz M, Khan M, Misra R, Pandita S, Raina B, Thurow J, Thusu B (2018) Petroleum systems and hydrocarbon potential of the North–West Himalaya of India and Pakistan. Earth Sci Rev 187:109–185

    Article  Google Scholar 

  • Damiani D, Giorgetti G, Turbanti IM (2006) Clay mineral fluctuations and surface textural analysis of quartz grains in pliocene–quaternary marine sediments from Wilkes land continental rise (East-Antarctica): paleoenvironmental significance. Mar Geol 226:281–295

    Article  Google Scholar 

  • Davies GR, Smith LB (2006) Structurally controlled hydrothermal dolomite reservoir facies: an overview. AAPG Bull 90:1641–1690

    Article  Google Scholar 

  • Diaz MR, Eberli GP, Blackwelder P, Phillips B, Swart PK (2017) Microbially mediated organomineralization in the formation of ooids. Geology 45:771–774. https://doi.org/10.1130/g39159.1

    Article  Google Scholar 

  • Dickson JAD (1966) Carbonate identification and genesis as revealed by staining. J Sediment Res 36(2):491–505

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks—a symposium. American Association of Petroleum Geologists, Tulsa, pp 108–121

    Google Scholar 

  • Eid GAA, Breuer P, Aburas A (2015) Stratigraphic and depositional analysis of the Faridah reservoirs in the central and northeastern parts of Saudi Arabia. Poster presentation aapg annual convention and exhibition, Denver, Colorado, United States, 31 May–3 June 2015

  • Fan Q, Liu D, Xu M, Zhao S, Tang Z, Xiao D, Li Y, Deng Y, Du W, Zhang Z (2024) Origin of calcite cements in the Permian Lucaogou Formation tight reservoirs, Jimsar sag, Junggar basin, NW China: Constraints from geochemistry. Mar Pet Geol 161:106675. https://doi.org/10.1016/j.marpetgeo.2023.106675

    Article  CAS  Google Scholar 

  • Flügel E (2004) Depositional models, facies zones and standard microfacies. In: Microfacies of carbonate rocks: analysis, interpretation and application. Springer, Berlin, pp 657–724

    Chapter  Google Scholar 

  • Gardosh M, Weimer P, Flexer A (2011) The sequence stratigraphy of mesozoic successions in the Levant Margin, Southwestern Israel: a model for the evolution of southern tethys margins. AAPG Bull 95:1763–1793

    Article  Google Scholar 

  • Gasparrini M, Bechstädt T, Boni M (2006) Massive hydrothermal dolomites in the southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan evolution. Mar Pet Geol 23:543–568

    Article  CAS  Google Scholar 

  • Han Z, Hu X, Li J, Garzanti E (2016) Jurassic carbonate microfacies and relative sea-level changes in the Tethys Himalaya (Southern Tibet). Palaeogeogr Palaeoclimatol Palaeoecol 456:1–20

    Article  Google Scholar 

  • Harwood M (2005) Facies architecture and depositional geometry of a Late Visean Carbonate Platform Margin. Cardiff University (United Kingdom), Derbyshire, UK

    Google Scholar 

  • Hopkins JC (2004) Geometry and origin of dolomudstone reservoirs: Pekisko Formation (Lower Carboniferous), Western Canada. In: Braithwaite CJR, Rizzi G, Darke G (eds) The geometry and petrogenesis of dolomite hydrocarbon reservoirs. Geological society, vol 235. Press Publications, London, pp 349–366

    Google Scholar 

  • Ismanto AW, Chan SA, Babalola LO, Kaminski MA, Al-Ramadan KA, Abdullatif OM (2019) Microfacies, biofacies, and depositional environments of the Bajocian-Bathonian Middle Dhruma carbonates, Central Saudi Arabia. Int J Earth Sci 108:2577–2601

    Article  CAS  Google Scholar 

  • Jafarian A, Fallah-Bagtash R, Mattern F, Heubeck C (2017) Reservoir quality along a homoclinal carbonate ramp deposit: the Permian Upper Dalan Formation, South Pars Field, Persian Gulf Basin. Mar Pet Geol 88:587–604. https://doi.org/10.1016/j.marpetgeo.2017.09.002

    Article  Google Scholar 

  • Jain A, Banerjee D, Kale VS (2020) Tectonics of the Indian subcontinent: an introduction. In: Tectonics of the Indian subcontinent. Springer, Cham, pp 1–16

    Chapter  Google Scholar 

  • Janjuhah HT, Sanjuan J, Alqudah M, Salah MK (2021) Biostratigraphy, depositional and diagenetic processes in carbonate rocks from southern lebanon: impact on porosity and permeability. Acta Geol Sin Engl Ed 95:1668–1683

    Article  CAS  Google Scholar 

  • Jiang L, Worden RH, Cai CF, Shen AJ, He XY, Pan LY (2018) Contrasting diagenetic evolution patterns of platform margin limestones and dolostones in the Lower Triassic Feixianguan Formation, Sichuan Basin, China. Mar Pet Geol 92:332–351. https://doi.org/10.1016/j.marpetgeo.2017.10.029

    Article  CAS  Google Scholar 

  • Kazmi AH, Jan MQ (1997) Geology and tectonic of Pakistan. Graphic publication, Karanchi, p 554

    Google Scholar 

  • Kırmaci MZ, Yıldız M, Kandemir R, Eroğlu-Gümrük T (2018) Mulstistage dolomitization in Late Jurassic-Early Cretaceous platform carbonates (Berdiga Formation), Başoba Yayla (Trabzon), NE Turkey: Implications of the generation of magmatic arc on dolomitization. Mar Pet Geol 89:515–529

    Article  Google Scholar 

  • Kodama KP (2012) Paleomagnetism of sedimentary rocks: process and interpretation. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Lucia FJ (1995) Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG Bull 79(9):1275–1300

    Google Scholar 

  • Machel HG (2004) Concepts and models of dolomitization: a critical reappraisal. Geol Soc Lond Spec Public 235:7–63

    Article  CAS  Google Scholar 

  • Mansurbeg H, Morad S, Salem A, Marfil R, El-Ghali M, Nystuen J, Caja M, Amorosi A, Garcia D, La-Iglesia A (2008) Diagenesis and reservoir quality evolution of palaeocene deep-water, marine sandstones, the Shetland-Faroes Basin, British Continental Shelf. Mar Pet Geol 25:514–543

    Article  Google Scholar 

  • Mcdougall JW, Hussain A, Yeats RS (1993) The main boundary thrust and propagation of deformation into the foreland fold-and-thrust belt in Northern Pakistan near the Indus River. Geol Soc Lond Spec Public 74:581–588

    Article  Google Scholar 

  • Mehmood M, Naseem AA, Saleem M, Rehman JU, Kontakiotis G, Janjuhah HT, Khan EU, Antonarakou A, Khan I, Rehman AU (2023) Sedimentary facies, architectural elements, and depositional environments of the Maastrichtian Pab Formation in the Rakhi Gorge, Eastern Sulaiman Ranges, Pakistan. J Mar Sci Eng 11:726

    Article  Google Scholar 

  • Nakazawa T, Ueno K, Wang X (2009) Sedimentary facies of Carboniferous-Permian mid-oceanic carbonates in the Changning-Menglian Belt, West Yunnan, Southwest China: origin and depositional process. Isl Arc 18:94–107

    Article  Google Scholar 

  • Nikbakht ST, Rezaee P, Moussavi-Harami R, Khanehbad M, Ghaemi F (2019) Facies analysis, sedimentary environment and sequence stratigraphy of the Khan Formation in the Kalmard Sub-Block, Central Iran: Implications for Lower Permian palaeogeography. Neues Jahrbuch Für Geologie Und Paläontologie-Abhandlungen 292:129–154

    Article  Google Scholar 

  • Nizami AR (2019) Faunal assemblages of the Middle Jurassic Samana Suk Formation, Chichali Gorge section, Surghar Range, Sub-Himalayas. Pak Punjab Univ J Zool 34:55–60

    Google Scholar 

  • Nizami AR, Sheikh RA (2008) Sedimemtology of the middle Jurassic Samana Suk formation, Makarwal section, Surghar Range, Trans Indus Ranges, Pakistan. Geol Bull Punjab Univ 44:11–25

    Google Scholar 

  • Palma RM, López-Gómez J, Piethé RD (2007) Oxfordian ramp system (La Manga Formation) in the Bardas Blancas area (Mendoza Province) Neuquén Basin, Argentina: facies and depositional sequences. Sediment Geol 195:113–134

    Article  Google Scholar 

  • Qadir A, Shahzad K, Khan M, Ahmad W (2023) Reservoir evaluation of the eastern Tethyan Middle Eocene Larger Benthic Foraminifera dominated carbonates from Pakistan. Kuwait J Sci. https://doi.org/10.48129/kjs.15597

    Article  Google Scholar 

  • Qing H, Mountjoy EW (1994) Rare earth element geochemistry of dolomites in the Middle Devonian Presqu’ile barrier, Western Canada Sedimentary Basin: implications for fluid-rock ratios during dolomitization. Sedimentology 41:787–804

    Article  CAS  Google Scholar 

  • Rahim HU, Shah MM, Corbella M, Navarro-Ciurana D (2020) Diagenetic Evolution and associated dolomitization events in the Middle Jurassic Samana Suk Formation, Lesser Himalayan Hill Ranges, NW Pakistan. Carbonates Evaporites 35:1–26

    Article  Google Scholar 

  • Rahim HU, Qamar S, Shah MM, Corbella M, Martín-Martín JD, Janjuhah HT, Navarro-Ciurana D, Lianou V, Kontakiotis G (2022) Processes associated with multiphase dolomitization and other related diagenetic events in the Jurassic Samana Suk Formation, Himalayan foreland basin, NW Pakistan. Minerals 12:1320

    Article  CAS  Google Scholar 

  • Rahman NU, Song H, Benzhong X et al (2022) Middle-Late Permian and Early Triassic foraminiferal assemblages in the Western Salt Range, Pakistan. Rudarsko-Geološko-Naftni Zbornik 37:161–196

    Article  Google Scholar 

  • Rameil N (2008) Early diagenetic dolomitization and dedolomitization of Late Jurassic and Earliest Cretaceous platform carbonates: a case study from the Jura Mountains (NW Switzerland, E France). Sed Geol 212:70–85

    Article  Google Scholar 

  • Rehman G, Zhang G, Rahman MU, Rahman NU, Usman T, Imraz M (2020) The engineering assessments and potential aggregate analysis of mesozoic carbonates of Kohat Hills Range, KP, Pakistan. Acta Geod Geoph 55:477–493

    Article  Google Scholar 

  • Saboor A, Haneef M, Hanif M, Swati MAF (2020) Sedimentological attributes of the Middle Jurassic peloids-dominated carbonates of eastern Tethys, lesser Himalayas, Pakistan. Carbonates Evaporites 35:1–17

    Article  Google Scholar 

  • Saboor A, Ali F, Ahmad S, Haneef M, Hanif M, Imraz M, Ali N, Swati MAF, Zahid M, Sadiq I (2015) A preliminary account of the Middle Jurassic plays in Najafpur village, Southeastern Hazara, Khyber Pakhtunkhwa, Pakistan. J Himal Earth Sci 48:41–49

    CAS  Google Scholar 

  • Schlaich M, Aigner T (2017) Facies and integrated sequence stratigraphy of an epeiric carbonate ramp succession: Dhruma Formation, Sultanate of Oman. Depositional Record 3:92–132

    Article  Google Scholar 

  • Shah SMI (2009) Stratigraphy of Pakistan of memoirs of the geological survey of Pakistan, vol 22, pp 1–381

  • Shah MM, Nader F, Garcia D, Swennen R, Ellam R (2012) Hydrothermal dolomites in the Early Albian (Cretaceous) platform carbonates (Nw Spain): nature and origin of dolomites and dolomitising fluids. Oil Gas Sci Technol-Rev D’ifp Energ Nouvelles 67:97–122

    Article  CAS  Google Scholar 

  • Shah MM, Ahmed W, Ahsan N, Lisa M (2016) Fault-controlled, bedding-parallel dolomite in the Middle Jurassic Samana Suk Formation in Margalla Hill Ranges, Khanpur Area (North Pakistan): petrography, geochemistry, and petrophysical characteristics. Arab J Geosci 9:1–18

    Article  Google Scholar 

  • Shah MM, Rahim HU, Hassan A, Mustafa MR, Ahmad I (2020) Facies control on selective dolomitization and its impact on reservoir heterogeneities in the Samana Suk Formation (Middle Jurassic), Southern Hazara Basin (NW Himalaya, Pakistan): an outcrop analogue. Geosci J 24:295–314

    Article  CAS  Google Scholar 

  • Shah MM, Afridi S, Khan EU, Rahim HU, Mustafa MR (2021) Diagenetic modifications and reservoir heterogeneity associated with magmatic intrusions in the Devonian Khyber Limestone, Peshawar Basin, NW Pakistan. Geofluids 2021:1–18. https://doi.org/10.1155/2021/8816465ShahSMI(2009)StratrigraphyofPakistan.GeologicalSurveyofPakistanMemoir

    Article  CAS  Google Scholar 

  • Sibley DF, Gregg JM (1987) Classification of dolomite rock textures. J Sediment Res 57:967–975

    Google Scholar 

  • Swart PK (2015) The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology 62(5):1233–1304. https://doi.org/10.1111/sed.12205

    Article  CAS  Google Scholar 

  • Tasli K, Altiner D, Koc H, Eren M (2008) Benthic foraminiferal biostratigraphy of the Jurassic platform carbonate succession in the Bolkar Mountains (Southern Turkey). Micropaleontology 54:425–444

    Article  Google Scholar 

  • Tucker ME, Wright VP (2009) Carbonate sedimentology. John Wiley & Sons, Hoboken

    Google Scholar 

  • Ullah Z, Li J-W, Robinson PT et al (2020) Mineralogy and geochemistry of peridotites and chromitites in the Jijal Complex ophiolite along the Main Mantle Thrust (MMT or Indus Suture Zone) North Pakistan. Lithos 366:105566

    Article  Google Scholar 

  • Ullah Z, Khan A, Faisal S et al (2022) Petrogenesis of peridotites in the Dargai Complex ophiolite, Indus Suture Zone, Northern Pakistan: Implications for two stages of melting, depletion, and enrichment of the Neo-Tethyan mantle. Lithos 426:106798

    Article  Google Scholar 

  • Umar M, Sabir MA, Farooq M, Khan MMSS, Faridullah F, Jadoon UK, Khan AS (2015) Stratigraphic and sedimentological attributes in Hazara Basin Lesser Himalaya, North Pakistan: their role in deciphering minerals potential. Arab J Geosci 8:1653–1667

    Article  CAS  Google Scholar 

  • Vandeginste V, John CM, Manning C (2013) Interplay between depositional facies, diagenesis and early fractures in the Early Cretaceous Habshan Formation, Jebel Madar, Oman. Mar Pet Geol 43:489–503. https://doi.org/10.1016/j.marpetgeo.2012.11.006

    Article  CAS  Google Scholar 

  • Wadood B, Aziz M, Ali J, Khan N, Wadood J, Khan A, Shafiq M, Ullah M (2021a) Depositional, diagenetic, and sequence stratigraphic constrains on reservoir characterization: a case study of Middle Jurassic Samana Suk Formation, Western Salt Range, Pakistan. J Sediment Environ 6:131–147

    Article  Google Scholar 

  • Wadood B, Khan S, Li H, Liu Y, Ahmad S, Jiao X (2021b) Sequence stratigraphic framework of the Jurassic Samana Suk carbonate formation, North Pakistan: implications for reservoir potential. Arab J Scie Eng 46:525–542

    Article  CAS  Google Scholar 

  • Wadood B, Khan S, Li H, Wadood J, Ahmad S, Khan A (2021c) The middle permian (capitanian) carbonate platform evolution and stratigraphic architecture of a Neo-Tethys Rim Basin, Central Pakistan. Geol J 56:4080–4101

    Article  Google Scholar 

  • Widodo RW, Laya JC (2017) Controls on diagenesis and dolomitization of peritidal facies, early cretaceous lower edwards group, Central Texas, USA. Facies. https://doi.org/10.1007/s10347-017-0503-2

    Article  Google Scholar 

  • Wilson JL (2012) Carbonate facies in geologic history. Springer, Berlin

    Google Scholar 

  • Yousef I, Morozov V, Kolchugin A, Leontev A, Fatmeh T (2022) Impact of microfacies and diagenesis on the reservoir quality of Upper Devonian carbonates in Southeast Tatarstan, Volga-Ural Basin, Russia. Pet Res 8(3):386–403. https://doi.org/10.1016/j.ptlrs.2022.10.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Department of Physics and Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan, are especially acknowledged for providing the geochemical analysis facility.

Funding

Partial support of this study is provided by Quaid-i-Azam University, Islamabad, Pakistan, to carry out field work and partial funding is granted by Higher Education Commission, Pakistan, Access to Scientific Instruments Program (ASIP) for the laboratory analysis.

Author information

Authors and Affiliations

Authors

Contributions

MS has carried out field, petrography, and geochemical studies, and prepared the initial draft of MS. MMS: thesis supervision, funds arrangement, and draft checking. HUR carried out fieldwork and petrography, and checked the whole draft and finalized the MS. JAJ helped 1st author in geochemical studies and done the art work. IA helped in manuscript preparation. RK drafted the figures and proofread the whole manuscript. KS helped in field studies and supervision.

Corresponding author

Correspondence to Hamad ur Rahim.

Ethics declarations

Conflict of interest

The authors declare that there are no financial or non-financial competing interests that could be perceived to influence the research. No conflicts of interest, such as employment, consultancies, or stock ownership in organizations with direct relevance to this study, have influenced the research design, data analysis, or interpretation of results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzeb, M., Shah, M.M., Rahim, H.u. et al. Depositional and diagenetic studies of the middle Jurassic Samana Suk Formation in the Trans Indus Ranges and western extension of Hill Ranges, Pakistan: an integrated sedimentological and geochemical approach. Carbonates Evaporites 39, 19 (2024). https://doi.org/10.1007/s13146-024-00937-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-024-00937-6

Keywords

Navigation