Skip to main content
Log in

Tracing nitrate pollution sources of karst groundwater in water resources using environmental isotopes

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The contamination of NO3 in groundwater is a global concern, requiring the identification of biogeochemical transformations and sources of nitrate (NO3) to understand the different nitrogen (N) pathways. This is necessary for the regulation of dispersed pollution of groundwater caused by livestock and agricultural activities. Jinan, located in eastern China, serves as a suitable case study due to its reliance on karst groundwater as a water source and its significant population, industrial, and agricultural development, which pose a substantial risk of nitrogen pollutants in groundwater. Therefore, this study aims to investigate NO3 concentrations and isotopic compositions of N and oxygen in karst groundwater in Jinan City, Shandong province, eastern China, to determine the most significant sources and transformations of NO3. Approximately 86% of the groundwater samples exceed the NO3–N standard for drinking water proposed by the World Health Organization (WHO). Furthermore, chemical indicators (Cl, HCO3, and TDS) and the oxygen and nitrogen isotopic compositions of NO3 indicate that soil organic nitrogen, manure, and urban sewage are the main sources of NO3 in the groundwater. Isotopic analyses also suggest that various biogeochemical transformations, such as nitrification and volatilization, occur throughout the study area, with microbial nitrification being the dominant process in water resource areas with high NO3 concentrations. To reduce NO3− pollution in the Changqing–Xiaolipu water supply, several suggestions have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  • Acevedo Peralta AI, Leos Rodríguez JA, Figueroa Viramontes U, Romo Lozano JL (2017) Política ambiental: uso y manejo del estiércol en la Comarca Lagunera. Acta Universitaria 27(4):3–12

    Article  Google Scholar 

  • Andersson KK, Hooper AB (1983) O2 and H2O are each the source of one O in NO− 2 produced from NH3 by Nitrosomonas: 15N-NMR evidence. FEBS Lett 164(2):236–240

    Article  Google Scholar 

  • Boonsaner M, Hawker DW (2013) Evaluation of food chain transfer of the antibioticoxytetracycline and human risk assessment. Chemosphere 93:1009–1014

    Article  Google Scholar 

  • Böttcher J, Strebel O, Voerkelius S, Schmidt HL (1990) Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol 114(3–4):413–424

    Article  Google Scholar 

  • Cable E, Deng YW (2018) Trace elements in atmospheric wet precipitation in the Detroit metropolitan area: levels and possible sources. Chemosphere 210:1091–1098

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press

    Google Scholar 

  • Dan-Hassan MA, Olasehinde PI, Amadi AN, Yisa J, Jacob JO (2012) Spatial and temporal distribution of nitrate pollution in groundwater of Abuja. Nigeria. https://doi.org/10.5539/ijc.v4n3p104

    Article  Google Scholar 

  • Di Lorenzo T, Brilli M, Del Tosto D, Galassi DM, Petitta M (2012) Nitrate source and fate at the catchment scale of the Vibrata River and aquifer (central Italy): an analysis by integrating component approaches and nitrogen isotopes. Environ Earth Sci 67:2383–2398

    Article  Google Scholar 

  • Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB, Petrescu AR, Leach AM, de Vries W (2013) Consequences of human modification of the global nitrogen cycle. Philos Trans R Soc B 368(1621):20130116

    Article  Google Scholar 

  • Figueroa Viramontes U, Núñez Hernández G, Reta Sánchez DG, Flores López HE (2015) Balance regional de nitrógeno en el sistema de producción leche-forraje de la Comarca Lagunera, México. Revista Mexicana De Ciencias Pecuarias 6(4):377–392

    Article  Google Scholar 

  • Fukada T, Hiscock KM, Dennis PF, Grischek T (2003) A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. Water Res 37(13):3070–3078

    Article  Google Scholar 

  • Galloway JN (2003) The global nitrogen cycle. Treatise on Geochemistry, pp 557–583

  • Guo Z, Yan C, Wang Z, Xu F, Yang F (2020) Quantitative identification of nitrate sources in a coastal peri-urban watershed using hydrogeochemical indicators and dual isotopes together with the statistical approaches. Chemosphere 243:125364

    Article  Google Scholar 

  • Jiang Z, Lv L, Zhang W, Du Q, Pan B, Yang L, Zhang Q (2011) Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Res 45(6):2191–2198

    Article  Google Scholar 

  • Jørgensen PR, Urup J, Helstrup T, Jensen MB, Eiland F, Vinther FP (2004) Transport and reduction of nitrate in clayey till underneath forest and arable land. J Contam Hydrol 73(1–4):207–226

    Article  Google Scholar 

  • Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Christie P, Zhu ZL, Zhang FS (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci 106(9):3041–3046

    Article  Google Scholar 

  • Kaushal SS, Groffman PM, Band LE, Elliott EM, Shields CA, Kendall C (2011) Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environ Sci Technol 45(19):8225–8232

    Article  Google Scholar 

  • Kendall, C. (1998). Tracing nitrogen sources and cycling in catchments. In: Isotope tracers in catchment hydrology, pp 519–576

  • Kohn J, Soto DX, Iwanyshyn M, Olson B, Kalischuk A, Lorenz K, Hendry MJ (2016) Groundwater nitrate and chloride trends in an agriculture-intensive area in southern Alberta, Canada. Water Qual Res J Can 51(1):47–59

    Article  Google Scholar 

  • Lee KS, Bong YS, Lee D, Kim Y, Kim K (2008) Tracing the sources of nitrate in the Han River watershed in Korea, using δ15N-NO3− and δ18O-NO3− values. Sci Total Environ 395(2–3):117–124

    Article  Google Scholar 

  • Li SL, Liu CQ, Li J, Liu X, Chetelat B, Wang B, Wang F (2010) Assessment of the sources of nitrate in the Changjiang River, China using a nitrogen and oxygen isotopic approach. Environ Sci Technol 44(5):1573–1578

    Article  Google Scholar 

  • Li JG, Xie ZY, Qiu XC, Yu Q, Bu JW, Sun ZY, Long RJ, Brandis KJ, He J, Feng Q, Ramp D (2022) Heavy metal habitat: a novel framework for mapping heavy metal contamination over large-scale catchment with a species distribution model. Water Res 226:119310

    Article  Google Scholar 

  • Nestler A, Berglund M, Accoe F, Duta S, Xue D, Boeckx P, Taylor P (2011) Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies. Environ Sci Pollut Res 18:519–533

    Article  Google Scholar 

  • Nikolenko O, Jurado A, Borges AV, Knӧller K, Brouyѐre S (2018) Isotopic composition of nitrogen species in groundwater under agricultural areas: a review. Sci Total Environ 621:1415–1432

    Article  Google Scholar 

  • Ogrinc N, Tamše S, Zavadlav S, Vrzel J, Jin L (2019) Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko polje aquifer (Slovenia): a stable isotope perspective. Sci Total Environ 646:1588–1600

    Article  Google Scholar 

  • Rao NS (2006) Nitrate pollution and its distribution in the groundwater of Srikakulam district, Andhra Pradesh, India. Environ Geol 51:631–645

    Article  Google Scholar 

  • Saccon P, Leis A, Marca A, Kaiser J, Campisi L, Böttcher ME, Savarino J, Escher P, Eisenhauer A, Erbland J (2013) Determination of nitrate pollution sources in the Marano Lagoon (Italy) by using a combined approach of hydrochemical and isotopic techniques. Procedia Earth Planetary Sci 7:758–761

    Article  Google Scholar 

  • Shalev N, Burg A, Gavrieli I, Lazar B (2015) Nitrate contamination sources in aquifers underlying cultivated fields in an arid region–The Arava Valley, Israel. Appl Geochem 63:322–332

    Article  Google Scholar 

  • Sun B, Xing LT, Li CS (2018) Variation of typical pollution components and pollution way of karst water in Baotu Spring region. Carsologica Sinica 37:810–818

    Google Scholar 

  • Taiwo AM, Harrison RM, Shi ZB (2014) A review of receptor modelling of industrially emitted particulate matter. Atmos Environ 97:109–120

    Article  Google Scholar 

  • Vitòria L, Otero N, Soler A, Canals A (2004) Fertilizer characterization: isotopic data (N, S, O, C, and Sr). Environ Sci Technol 38(12):3254–3262

    Article  Google Scholar 

  • Vitòria L, Soler A, Canals À, Otero N (2008) Environmental isotopes (N, S, C, O, D) to determine natural attenuation processes in nitrate contaminated waters: example of Osona (NE Spain). Appl Geochem 23(12):3597–3611

    Article  Google Scholar 

  • Wang JJ (2016) Numerical model of karst groundwater in Jinan and the Houzumi water supply management model. Shandong University

    Google Scholar 

  • Wexler SK, Hiscock KM & Dennis PF (2009) Tracing the sources and fate of diffuse nitrate contamination in a lowland agricultural catchment using a dual-isotope method. In: EGU General Assembly Conference Abstracts, 691

  • Widory D, Petelet-Giraud E, Négrel P, Ladouche B (2005) Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis. Environ Sci Technol 39(2):539–548

    Article  Google Scholar 

  • World Health Organization (2017) Guidelines for drinking-water quality: first addendum to the fourth edition

  • Xue D, Botte J, De Baets B, Accoe F, Nestler A, Taylor P, Van Cleemput O, Berglund M, Boeckx P (2009) Present limitations and future prospects of stable isotope methods for nitrate source identification in surface-and groundwater. Water Res 43(5):1159–1170

    Article  Google Scholar 

  • Yu D, Yu J, Wu D, Han Y, Sun B, Zheng L, Chen H, Liu R (2023) Isotopic and hydrochemical characteristics of the Changqing-Xiaolipu water resource, Jinan, Eastern China: implications for water resources in the Yellow River Basin. Sustainability 15(3):2439

    Article  Google Scholar 

  • Yuan DX, Jiang YJ, Shen LC, Pu JB, Xiao Q (2016) Modern karstology. Science Press, Beijing

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 42102076) and project ZR2021QD037 supported by Shandong Provincial Natural Science Foundation. We especially thank anonymous reviewers for their valuable and constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

Y.F Zhang, D.L Yu, D. Wu, Y.H Zhao, Z. Zhang, B. Li and R. Liu wrote the main manuscript text; B.H Huang, M.G Wang, J.R Gao and Y.X Kang prepared figures 1-6.

Corresponding authors

Correspondence to Dalu Yu or Rui Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yu, D., Wu, D. et al. Tracing nitrate pollution sources of karst groundwater in water resources using environmental isotopes. Carbonates Evaporites 38, 80 (2023). https://doi.org/10.1007/s13146-023-00906-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-023-00906-5

Keywords

Navigation