Skip to main content
Log in

Sedimentological and diagenetic analysis of Early Eocene Margalla Hill Limestone, Shahdara area, Islamabad, Pakistan: implications for reservoir potential

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The role of the micro-facies and diagenesis was assessed to delineate the reservoir potential of the Early Eocene Margalla Hill Limestone, of the Shahdara section. The main focus of the study is the investigation and assessing the quality of the reservoir on the basis of diagenetic and depositional fabrics. Lithologically, the formation grades from thin to medium and massive bedded smaller to larger nodular limestone with sub-ordinate marl and shale inter-beds. Five micro-facies were established based on estimated allo-chemical and ortho-chemical constituent. The enumerated micro-facies include: Planktonic foraminiferal mud-wackestone (MHL-1); Lime mudstone (MHL-2); Lockhartia-rich mud-wackestone (MHL-3); Foraminiferal wackestone (MHL-4) and Bioclastic wackestone (MHL-5). These micro-facies are consistent with the deposition in the proximal outer ramp to proximal inner ramp settings of the gentle-sloping homoclinal ramp environment. The Margalla Hill Limestone is characterized by the fossil assemblages of mainly larger benthic foraminifera, such as Lockhartia, Assilina, Nummulites, rare Operculina, and Rotalia sp., and shallower fauna (echinoderms, algae and miliolids) and a few planktonic foraminifera including Morozovella cf. acuta, Globigerinatheka sp. and other Globogerinids. The fossil assemblages, allo-chemical and micritic constituents signify the depositional change from deep water toward the shallower setting, reflecting a coarsening upward trend during the deposition of the Margalla Hill Limestone. The Margalla Hill Limestone has been subjected to various diagenetic overprints which include micritization, cementation, neomorphism, compactions (mechanical and chemical), dissolution, dolomitization, and micro-calcite-filled fractures, representing early to syn- and post-depositional events. The diagenetic imprints of dissolution, micro-fractures, dolomitization enhance the reservoir characteristics, whereas cementation, micritization, neomorphism and chemical and mechanical compactions adversely affect the reservoir properties of the formation. In the Margalla Hill Limestone, the controlling factors of porosity and permeability distribution are attributed by depositional, diagenetic and deformational processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abu El Ghar MS, Khalifa MA, Hussein AW (2015) Carbonate diagenesis of the mixed clastic–carbonate Galala formation, north eastern Desert, Egypt. Arab J Geosci 8(5):2551–2565

    Article  Google Scholar 

  • Abuseda H, Kassab MA, LaLa AM, El Sayed NA (2015) Integrated petrographical and petrophysical studies of some Eocene carbonate rocks, southwest Sinai, Egypt. Egypt J Pet 24(2):213–230

    Article  Google Scholar 

  • Adabi MH, Zohdi A, Ghabeishavi A et al (2008) Applications of nummulitids and other larger benthic foraminifera in depositional environment and sequence stratigraphy: an example from the Eocene deposits in Zagros Basin, SW Iran. Facies 54:499–512. https://doi.org/10.1007/s10347-008-0151-7Ô

  • Ahmad S (2011) Paleogene larger benthic foraminiferal stratigraphy and facies distribution: implications for tectonostratigraphic evolution of the Kohat basin, Potwar basin and the Trans Indus Ranges (TIR) northwest Pakistan (Doctoral dissertation, University of Edinburgh)

  • Ahmad S, Wadood B, Khan S, Ullah A, Mustafa G, Hanif M, Ullah H (2020) The sedimentological and stratigraphical analysis of the Paleocene to Early Eocene Dungan formation, Kirthar fold and thrust belt, Pakistan: implications for reservoir potential. J Sediment Environ 5(4):473–492

    Article  Google Scholar 

  • Ahmad F, Quasim MA, Ahmad AHM (2021) Microfacies and diagenetic overprints in the limestones of middle Jurassic fort member (Jaisalmer Formation), western Rajasthan, India: implications for the depositional environment, cyclicity, and reservoir quality. Geol J 56(1):130–151

    Article  Google Scholar 

  • Ahsan N, Chaudhry MN (2008) Geology of Hettangian to middle Eocene rocks of Hazara and Kashmir basins, northwest lesser Himalayas, Pakistan. Geol Bull Panjab Univ 43:131–152

    Google Scholar 

  • Awais M, Hanif M, Jan IU, Ishaq M, Khan MY (2020) Eocene carbonate microfacies distribution of the Chorgali formation, Gali Jagir, Khair-e-Murat range, Potwar plateau, Pakistan: approach of reservoir potential using outcrop analogue. Arab J Geosci 13(14):1–18

    Article  Google Scholar 

  • Banerjee S, Khanolkar S, Saraswati PK (2018) Facies and depositional settings of the middle Eocene-Oligocene carbonates in Kutch. Geodin Acta 30(1):119–136

    Article  Google Scholar 

  • Barattolo F, Bassi D, Romano R (2007) Upper Eocene larger foraminiferal–coralline algal facies from the Klokova mountain (southern continental Greece). Facies 53(3):361–375

    Article  Google Scholar 

  • Beavington-Penney SJ, Racey A (2004) Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. Earth Sci Rev 67(3–4):219–265

    Article  Google Scholar 

  • Boggs S (2009) Petrology of sedimentary rocks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Brandano M, Frezza V, Tomassetti L, Pedley M, Matteucci R (2009) Facies analysis and palaeoenvironmental interpretation of the late Oligocene Attard member (lower coralline limestone formation). Malta Sedimentol 56(4):1138–1158

    Article  Google Scholar 

  • Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sediment Geol 79(1–4):3–57

    Article  Google Scholar 

  • Burg JP, Célérier B, Chaudhry NM, Ghazanfar M, Gnehm F, Schnellmann M (2005) Fault analysis and paleostress evolution in large strain regions: methodological and geological discussion of the southeastern Himalayan fold-and-thrust belt in Pakistan. J Asian Earth Sci 24(4):445–467

    Article  Google Scholar 

  • Corda L, Brandano M (2003) Aphotic zone carbonate production on a Miocene ramp, central Apennines, Italy. Sediment Geol 161(1–2):55–70

    Article  Google Scholar 

  • Ćosović V, Drobne K, Moro A (2004) Paleoenvironmental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian Peninsula). Facies 50(1):61–75

    Article  Google Scholar 

  • Daraei M, Amini A, Ansari M (2015) Facies analysis and depositional environment study of the mixed carbonate–evaporite Asmari formation (Oligo-Miocene) in the sequence stratigraphic framework, NW Zagros, Iran. Carbonates Evaporites 30(3):253–272

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks, vol 1. AAPG, Tulsa, pp 108–121

    Google Scholar 

  • Fahad M, Khan MA, Hussain J, Ahmed A, Yar M (2021) Microfacies analysis, depositional settings and reservoir investigation of Early Eocene Chorgali formation exposed at eastern salt range, upper Indus basin, Pakistan. Carbonates Evaporites 36(3):1–18

    Article  Google Scholar 

  • Fan TL, Yu BS, Gao ZQ (2007) Characteristics of carbonate sequence stratigraphy and its control on oil-gas in Tarim basin. Geoscience 21(1):57–65

    Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Flügel E (2010) Microfacies of carbonate rocks, analysis, interpretation and application, 2nd edn. Springer, Heidelberg, p 984

    Google Scholar 

  • Garland J, Neilson J, Laubach SE, Whidden KJ (2012) Advances in carbonate exploration and reservoir analysis. Geol Soc, Lond, Special Publ 370(1):1–15

    Article  Google Scholar 

  • Geel T (2000) Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 155(3–4):211–238

    Article  Google Scholar 

  • Grelaud S, Sassi W, de Lamotte DF, Jaswal T, Roure F (2002) Kinematics of eastern salt range and south Potwar basin (Pakistan): a new scenario. Mar Pet Geol 19(9):1127–1139

    Article  Google Scholar 

  • Hassan HM (2007) Stylolite effect on geochemistry, porosity and permeability: comparison between a limestone and a dolomite sample from Khuff-B reservoir in eastern Saudi Arabia. Arab J Sci Eng 32(2A):139

    Google Scholar 

  • Heap MJ, Baud P, Reuschlé T, Meredith PG (2014) Stylolites in limestones: barriers to fluid flow? Geology 42(1):51–54

    Article  Google Scholar 

  • Hottinger L (1997) Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bull De La Société Géologique De France 168(4):491–505

    Google Scholar 

  • Huaiyou J, Xinmin S, Yuanji W, Xiaoxuan A, Renli Q, Shimi P (2008) Current situation and forecast of the world’s carbonate oil and gas exploration and development. Offshore Oil 28(4):6–13

    Google Scholar 

  • Hussain J, Khan T, Shami BA, Zafar M, Hayat T (2021) Microfacies analysis and reservoir evaluation based on diagenetic features and log analysis of the Nammal formation, western and central salt range, upper Indus basin, Pakistan. Arab J Geosci 14(11):1–21

    Article  Google Scholar 

  • Hussein AW, Abd El-Rahman Y (2020) Diagenetic evolution of the Eocene ramp carbonates (a paradigm from the Nile valley, Egypt): petrographical and geochemical attributes. Mar Pet Geol 119:104484

    Article  Google Scholar 

  • Iannace A, Capuano M, Galluccio L (2011) “Dolomites and dolomites” in Mesozoic platform carbonates of the southern Apennines: geometric distribution, petrography and geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol 310(3–4):324–339

    Article  Google Scholar 

  • Ishaq M, Jan IU, Hanif M, Awais M (2019) Microfacies and diagenetic studies of the early Eocene Sakesar limestone, Potwar plateau, Pakistan: approach of reservoir evaluation using outcrop analogue. Carbonates Evaporites 34(3):623–656

    Article  Google Scholar 

  • Jafarian A, Javanbakht M, Koeshidayatullah A, Pimentel N, Salad Hersi O, Yahyaei A and Beigi M (2018) Paleoenvironmental, diagenetic, and eustatic controls on the Permo–Triassic carbonate–evaporite reservoir quality, Upper Dalan and Kangan formations, Lavan Gas Field, Zagros Basin. Geol J 53(4):1442–1457

  • Jaswal TM, Lillie RJ, Lawrence RD (1997) Structure and evolution of the northern Potwar deformed zone, Pakistan. AAPG Bull 81(2):308–328

    Google Scholar 

  • Kadri IB (1995) Petroleum geology of Pakistan. Pakistan Petroleum Limited

  • Kamalifar F, Aleali M, Ahmadi V, Mirzaiee A (2020) Facies distribution, paleoenvironment and sequence stratigraphy model of the Oligo-Miocene Asmari formation (Fars Province, south of Iran). Turkish J Earth Sci 49(4):664–683

    Article  Google Scholar 

  • Kamran SM, Siddiqi MI (2011) Structural geology and hydrocarbon prospects of the Khairi-Murat area, Potwar sub-basin, Pakistan. Pak J Hydrocarbon Res 21:33–40

    Google Scholar 

  • Kazmi, A.H. and Rana, R.A., 1982. Tectonic map of Pakistan 1: 2 000 000: Map showing structural features and tectonic stages in Pakistan. Geological survey of Pakistan.

  • Khalifa MA (2005) Lithofacies, diagenesis and cyclicity of the ‘lower member’of the Khuff formation (late Permian), Al Qasim province, Saudi Arabia. J Asian Earth Sci 25(5):719–734

    Article  Google Scholar 

  • Khalifa MA, Kumon F, Yoshida K (2009) Calcareous duricrust, Al Qasim province, Saudi Arabia: occurrence and origin. Quatern Int 209(1–2):163–174

    Article  Google Scholar 

  • Khan Z, Sachan HK, Ahmad AHM, Ghaznavi AA (2020a) Microfacies, diagenesis, and stable isotope analysis of the Jurassic Jumara Dome carbonates, Kachchh, western India: implications for depositional environments and reservoir quality. Geol J 55(1):1041–1061

    Article  Google Scholar 

  • Khan EU, Saleem M, Naseem AA, Ahmad W, Yaseen M, Khan TU (2020b) Microfacies analysis, diagenetic overprints, geochemistry, and reservoir quality of the Jurassic Samanasuk formation at the Kahi section, Nizampur basin, NW Himalayas, Pakistan. Carbonates Evaporites 35(3):1–17

    Article  Google Scholar 

  • Khitab U, Umar M, Jamil M (2020) Microfacies, diagenesis and hydrocarbon potential of Eocene carbonate strata in Pakistan. Carbonates Evaporites 35(3):1–15

    Article  Google Scholar 

  • Koehn D, Rood MP, Beaudoin N, Chung P, Bons PD, Gomez-Rivas E (2016) A new stylolite classification scheme to estimate compaction and local permeability variations. Sed Geol 346:60–71

    Article  Google Scholar 

  • Lind I, Nykjaer O, Priisholm S, Springer N (1994) Permeability of stylolite-bearing chalk. J Petrol Technol 46(11):986–993

    Article  Google Scholar 

  • Mahboubi A, Moussavi-Harami R, Carpenter SJ, Aghaei A, Collins LB (2010) Petrographical and geochemical evidences for paragenetic sequence interpretation of diagenesis in mixed siliciclastic–carbonate sediments: Mozduran formation (Upper Jurassic), south of Agh-Darband, NE Iran. Carbonates Evaporites 25(3):231–246

    Article  Google Scholar 

  • Mehr MK, Adabi MH (2014) Microfacies and geochemical evidence for original aragonite mineralogy of a foraminifera-dominated carbonate ramp system in the late Paleocene to middle Eocene, Alborz basin, Iran. Carbonates Evaporites 29(2):155–175

    Article  Google Scholar 

  • Mehrabi H, Rahimpour-Bonab H, Enayati-Bidgoli AH, Navidtalab A (2014) Depositional environment and sequence stratigraphy of the upper cretaceous Ilam formation in central and southern parts of the Dezful embayment, SW Iran. Carbonates Evaporites 29(3):263–278

    Article  Google Scholar 

  • Moghal MA, Saqi MI, Hameed A, Bugti MN (2007) Subsurface geometry of Potwar sub-basin in relation to structuration and entrapment. Pakistan J Hydrocarb Res 17:61–72

    Google Scholar 

  • Munir MH, Baig MS, Qureshi MA (1997) Lower tertiary litho-biostratigraphy of the Bagla-Kohala-Bala Area, Haripur Hazara (NWFP), Pakistan. Geol Bull, Univ Punjab, p 31–32

  • Nichols G (2009) Sedimentology and stratigraphy, 2nd edn. Wiley-Blackwell, Oxford, p 419

    Google Scholar 

  • Pomar L (2001) Types of carbonate platforms: a genetic approach. Basin Res 13(3):313–334

    Article  Google Scholar 

  • Racey A (1994) Biostratigraphy and palaeobiogeographic significance of Tertiary nummulitids (foraminifera) from northern Oman. Micropalaeont Hydrocarb Explor Middle East 343:370

    Google Scholar 

  • Rasser MW, Scheibner C, Mutti M (2005) A paleoenvironmental standard section for Early Ilerdian tropical carbonate factories (Corbieres, France; Pyrenees, Spain). Facies 51(1–4):218–232

    Article  Google Scholar 

  • Read JF, Husinec A, Cangialosi M, Loehn CW, Prtoljan B (2016) Climate controlled, fabric destructive, reflux dolomitization and stabilization via marine-and synorogenic mixed fluids: an example from a large Mesozoic, calcite-sea platform, Croatia. Palaeogeogr Palaeoclimatol Palaeoecol 449:108–126

    Article  Google Scholar 

  • Romero J, Caus E, Rosell J (2002) A model for the palaeoenvironmental distribution of larger foraminifera based on late middle Eocene deposits on the margin of the south Pyrenean basin (NE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 179(1–2):43–56

    Article  Google Scholar 

  • Sallam E, Wanas HA, Osman R (2015) Stratigraphy, facies analysis and sequence stratigraphy of the Eocene succession in the Shabrawet area (north Eastern Desert, Egypt): an example for a tectonically influenced inner ramp carbonate platform. Arab J Geosci 8(12):10433–10458

    Article  Google Scholar 

  • Sarkar S (2017) Microfacies analysis of larger benthic foraminifera-dominated middle Eocene carbonates: a palaeoenvironmental case study from Meghalaya, NE India (Eastern Tethys). Arab J Geosci 10(5):121

    Article  Google Scholar 

  • Scholle PA, Ulmer-Scholle DS (2003) A color guide to the petrography of carbonate rocks grains textures porosity diagenesis, vol 77. AAPG Memoir, Tulsa. https://doi.org/10.1306/M77973

    Book  Google Scholar 

  • Shabafrooz R, Mahboubi A, Moussavi-Harami R, Amiri-Bakhtiar H (2013) Facies analysis and sequence stratigraphy of the evaporite bearing Sachun formation at the type locality, south east Zagros basin, Iran. Carbonates Evaporites 28(4):457–474

    Article  Google Scholar 

  • Shah SMI (2009) Stratigraphy of Pakistan. Mem Geol Surv Pak 22:257–262

    Google Scholar 

  • Swati MAF, Haneef M, Ahmad S, Naveed Y, Zeb W, Akhtar N, Owais M (2013) Biostratigraphy and depositional environments of the Early Eocene Margalla Hill Limestone, Kohala-Bala area, Haripur, Hazara fold-thrust belt, Pakistan. J Himal Earth Sci 46(2):65

    Google Scholar 

  • Swati MAF, Haneef M, Ahmad S, Latif K, Naveed Y, Zeb W, Akhtar N, Owais M (2014) Diagenetic analysis of the Early Eocene Margala Hill limestone, Pakistan: a synthesis for thin section porosity. J Himal Earth Sci 47(2):49

    Google Scholar 

  • Taghavi AA, Mørk A, Emadi MA (2006) Sequence stratigraphically controlled diagenesis governs reservoir quality in the carbonate Dehluran field, southwest Iran. Pet Geosci 12(2):115–126

    Article  Google Scholar 

  • Tucker ME, Wright VP (2009) Carbonate sedimentology. Wiley, Oxford, p 496

    Google Scholar 

  • Vincent B, Emmanuel L, Houel P, Loreau J-P (2007) Geodynamic control on carbonate diagenesis: petrographic and isotopic investigation of the upper Jurassic formations of the Paris Basin (France). Sediment Geol 197:267–289

    Article  Google Scholar 

  • Wanas HA, Shama AA, El-Nahrawy SA (2020) Depositional model and sequence stratigraphy of the Paleocene-lower Eocene succession in the Farafra Oasis, western Desert, Egypt. J Afr Earth Sci 162:103706

    Article  Google Scholar 

  • Yang L, Yu L, Chen D, Liu K, Yang P, Li X (2020) Effects of dolomitization on porosity during various sedimentation-diagenesis processes in carbonate reservoirs. Minerals 10(6):574

    Article  Google Scholar 

  • Yasin M, Umar M, Rameez S, Samad R (2017) Biostratigraphy of early eocenemargala hill limestone in the muzaffarabad area (Kashmir Basin, Azad Jammu and Kashmir). Pak J Geol (PJG) 1(2):16–20

    Article  Google Scholar 

  • Zamagni J, Mutti M, Košir A (2008) Evolution of shallow benthic communities during the late Paleocene–earliest Eocene transition in the northern Tethys (SW Slovenia). Facies 54(1):25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhsan Ehsan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, H., Hussain, J., Tariq, M. et al. Sedimentological and diagenetic analysis of Early Eocene Margalla Hill Limestone, Shahdara area, Islamabad, Pakistan: implications for reservoir potential. Carbonates Evaporites 37, 75 (2022). https://doi.org/10.1007/s13146-022-00822-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-022-00822-0

Keywords

Navigation