Skip to main content
Log in

Microfacies analysis and reservoir evaluation based on diagenetic features and log analysis of the Nammal Formation, Western and Central Salt Range, Upper Indus Basin, Pakistan

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Nammal Formation of Early Eocene age crops out at Nammal Gorge (NG) and Pail (PL) in the Salt Range, Upper Indus Basin, Pakistan. It comprises mainly medium to thick-bedded and rare thin-bedded limestone with mixed carbonate sequences of limestone, marl, and shale. Allochemical constituents and micrite estimated ratio leads in recognizing seven microfacies including Foraminifer wackestone, mudstone-wackestone, Foraminifer mudstone, and Assilina wackestone in the NG section and Foraminifer wackestone-packstone, Foraminifer wackestone, and Bioclastic packstone in PL section. Based on microfacies and fossil assemblages, the Nammal Formation is interpreted to have been deposited in outer to mid and inner ramp settings. The formation is largely transformed by diverse diagenetic episodes comprising micritization, cementation, dissolution, neomorphism, mechanical compaction, stylolitization, fractures, and vein formation. Fractures and dissolution are inferred to augment the prospect of hydrocarbon for reservoir of the Nammal Formation. ImageJ calculated porosities and log estimated average effective porosity range from 4 to 6% and 1 to 2%, respectively. The calculated log values in Dhermund-01 and Pindori-02 wells suggest that at certain limestone intervals of the encountered Nammal Formation, there is a compacted limestone that can be regarded as a tight reservoir for hydrocarbon accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aamir M, Siddiqui MM (2006) Interpretation and visualization of thrust sheets in a triangle zone in eastern Potwar, Pakistan. The Leading edge

  • Abu-El Ghar MS, Khalifa M, Hussein A (2015) Carbonate diagenesis of the mixed clastic–carbonate Galala Formation, North Eastern Desert, Egypt. Arab J Geosci 8:2551–2256

    Article  Google Scholar 

  • Abuseda H, Kassab MA, LaLa AM, El Sayed NA (2015) Integrated petrographical and petrophysical studies of some Eocene carbonate rocks, Southwest Sinai, Egypt. Egypt J Pet 24:213–230

    Article  Google Scholar 

  • Afzal J (1996) Late Cretaceous to Early Eocene foraminiferal biostratigraphy of the Rakhi Nala area, Sulaiman Range, Pakistan. Pakistan Journal of Hydrocarbon Research 8:1–24

    Google Scholar 

  • Ahmed S (2011) Paleogene larger benthic foraminiferal stratigraphy and facies distribution: implications for tectonostratigraphic evolution of the Kohat Basin, Potwar Basin and the Trans Indus Ranges (TIR) northwest Pakistan. Unpublished Ph.D. thesis, the University of Edinburgh

  • Ahr WM (2008) Geology of carbonate reservoirs: the identification, description, and characterization of hydrocarbon reservoirs in carbonate rocks. Wiley, New Jersey

    Book  Google Scholar 

  • Akhtar M, Butt AA (1999) Lower Tertiary biostratigraphy of the Kala Chitta Range, northern Pakistan. Rev Paléobiol 18:123–146

    Google Scholar 

  • Alam I, Sultan SA, Khan MW (2017) Structural architecturing and hydrocarbon reservoir potential of Sakesar Limestone: Surghar Range, North Pakistan. Int J Econ Environ Geol 8(2):1–8

    Google Scholar 

  • Anketell JM, Miriheel IY (2000) Depositional environment & diagenesis of the Eocene Jdeir Formation. Gabes–Tripoli Basin, western offshore Libya: Journal of Petroleum Geology 23:425–447

    Google Scholar 

  • Asif M, Fazeelat T (2012) Petroleum geochemistry of the Potwar Basin, Pakistan: II – Oil classification based on heterocyclic and polycyclic aromatic hydrocarbons. Appl Geochem 27:1655–1665

    Article  Google Scholar 

  • Banner JL (1995) Application of the trace element and isotope geochemistry of Strontium to studies of carbonate diagenesis. Sedimentol 42:805–824

    Article  Google Scholar 

  • Barbieri R, Hohenegger J, Pugliese N (2006) Foraminifera and environmental micropaleon-tology. Mar Micropaleontol 61(1):1–3

    Article  Google Scholar 

  • Beavington-Penney SJ, Racey A (2004) Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. Earth-Sci Rev 67:219–265

    Article  Google Scholar 

  • BouDagher-Fadel MK, Price GD, Hu X, Li J (2015) Late Cretaceousto early Paleogene foraminiferal biozones in the Tibetan Himalayas,and a pan-Tethyan foraminiferal correlation scheme. Stratigraphy 12:67–91

    Google Scholar 

  • Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sediment Geol 79:3–57

    Article  Google Scholar 

  • Butt AA (1986) Cretaceous biostratigraphic synthesis of Pakistan. Acta Mineralogica Pakistanic 2:60–64

    Google Scholar 

  • Buxton M, Pedley H (1989) Short paper: a standardized model for Tethyan Tertiary carbonate ramps. J Geol Soc 146:746–748

    Article  Google Scholar 

  • Cheema MR, Raza SM, Ahmad H (1977) Cenoxoic. In: Shah SMI (ed) Stratigraphy of Pakistan. Geol. Surv. Pak., Mem, vol 12, pp 56–98

    Google Scholar 

  • Dodd JR, Stanton RJ (1990) Paleoecology: concepts and applications. John Wiley & Sons, Hoboken

    Google Scholar 

  • Drobne K, Cosovic V, Moro A, Buckovic D (2011) The role of the Palaeogene Adriatic Carbonate Platform in the spatial distribution of Alveolinids. Turk J Earth Sci 20:721–751

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. Memoir American Association Petroleum Geology 1:108–121

    Google Scholar 

  • Ferket H, Ortuo-Arzate S, Roure F, Swennen R (2003) Lithologic control on matrix porosity in shallow-marine cretaceous reservoir limestones: a study of the Peuela Reservoir Outcrop Analogue (Cordoba Platform, Southeastern Mexico). In: Bartolini C, Buffler RT, Blickwede J (eds) The circum-Gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation, and plate tectonics, AAPG Memoir, vol, vol 79, pp 283–304

    Google Scholar 

  • Flugel E (2004) Microfacies of carbonate rocks, analysis, interpretation and application: Springer – Verlag

  • Flügel E (2010) Microfacies of carbonate rocks: analysis, interpretation and application, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Frank R, Buchbinder B, Benjamini C (2010) The mid-Cretaceous carbonate system of northern Israel: facies evolution, tectono-sedimentary configuration and global control on the central Levant margin of the Arabian Plate. Geological Society , London, Special Publications , 341, 133-169.

  • Gee ER (1980) Salt Range series geological maps: directorate of Overseas Surveys, United Kingdom, for Government of Pakistan and Pakistan Geological Survey, 1:50,000, 6 sheets

  • Gee ER (1989) Overview of the geology and structure of the Salt Range with observations on related areas of northern Pakistan. Geol Soc Am Spec Publ 232:95–112

    Google Scholar 

  • Ghazi S, Butt AA, Khan KA (2004) Microfacies and foraminiferal assemblage of the Lower Eocene Nammal Formation, Nilawahan Gorge, Salt Range, Pakistan. Geol Bull Punjab Univ 39:75–85

    Google Scholar 

  • Gibson TG (1990) Upper Paleocene foraminiferal biostratigraphy and paleoenvironments of the Salt Range, Punjab, Pakistan (No. 91-112). US Dept. of the Interior, US Geological Survey

  • Goeting S, Briguglio A, Eder W, Hohenegger J, Roslim A, Kocsis L (2018) Depth distribution of modern larger benthic foraminifera offshore Brunei Darussalam. Micropaleontology. 64:299–316

    Article  Google Scholar 

  • Hadi M, Mosaddegh H, Abbassi N (2016) Microfacies and biofabric of nummulite accumulations (Bank) from the Eocene deposits of Western Alborz (NW Iran). J Afr Earth Sci 124:216–233

    Article  Google Scholar 

  • Hadi M, Vahidinia M, Hrabovsky J (2018) Larger foraminiferalbiostratigraphy and microfacies analysis from the Ypresian (Ilerdian-Cuisian) limestones in the Sistan Suture Zone (eastern Iran). TurkishJ Earth Sci 27:122–145. https://doi.org/10.3906/yer-1802-10

    Article  Google Scholar 

  • Haque AFMM (1956) The foraminifera of the Ranikot & the Laki of the Nammal Gorge, Salt Range. Pakistan. Paleontologia Pakistanica 1:1–300

    Google Scholar 

  • Hasany ST, Saleem U (2012) An integrated subsurface geological and engineering study of Meyal Field, Potwar Plateau, Pakistan. Article #20151 AAPG

  • Hassan HM (2007) Stylolite effect on geochemistry, porosity and permeability: comparison between a limestone and a dolomite sample from Khuff-B Reservoir in Eastern Saudi Arabia. Arab J Sci Eng 32(2A):139–148

    Google Scholar 

  • Hohenegger J (2005) Estimation of environmental paleogradient val-ues based on presence/absence data: a case study using benthicforaminifera for paleodepth estimation. Palaeogeogr PalaeoclimatolPalaeoecol 217:115–130

    Article  Google Scholar 

  • Hohenegger J, Yordanova E, Nakano Y, Tatzreiter F (1999) Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Mar Micropaleontol 36:109–168

    Article  Google Scholar 

  • Hottinger L (1973) Selected Palaeogene larger foraminifera. In: Hallam A (ed) Atlas of palaeobiogeography. Elsevier, Amsterdam, pp 443–452

    Google Scholar 

  • Jadoon IAK, Hinderer M, Wazir B, Yousaf R, Bahadar S, Hassan M, Abbasi ZU, Jadoon S (2015) Structural styles, hydrocarbon prospects, and potential in the Salt Range and Potwar Plateau, north Pakistan. Arab J Geosci 8:5111–5125

    Article  Google Scholar 

  • Jaswal TM, Lillie RJ, Lawrence RD (1997) Structure and evolution of the northern Potwar deformed zone, Pakistan. Bull Am Assoc Pet Geol 81:308–328

    Google Scholar 

  • Kazmi AH, Jan MQ (1997) Geology and tectonics of Pakistan. Graphic Publishers, Karachi

    Google Scholar 

  • Khalifa M (2005) Lithofacies, diagenesis and cyclicity of the ‘lower member’of the Khuff formation (late Permian), Al Qasim Province, Saudi Arabia. J Asian Earth Sci 25:719–734

    Article  Google Scholar 

  • Khalifa M, Kumon F, Yoshida K (2009) Calcareous duricrust, Al Qasim Province, Saudi Arabia: occurrence and origin. Q Int 209:163–174

    Article  Google Scholar 

  • Köthe A, Khan AA, Ashraf M (1988) Biostratigraphy of the Surghar Range, Salt Range, Sulaiman Range and the Kohat area, Pakistan, according to Jurassic through Paleogene calcareous nannofossils and Paleogene dinoflagellates. Geol Jahrb B71:1–87

    Google Scholar 

  • Laurel BM, Jean M (1988) Calcareous nano fossils from Paleogene deposits in the Salt Range Punjab. Northern Pakistan. U.S, Geological Survey

    Google Scholar 

  • Lucia FJ (1995) Rock fabric/petrophysical classification of carbonate pore space for reservoir characterization. Am Assoc Pet Geol Bull 79(9):1275–1300

    Google Scholar 

  • Mahboubi A, Moussavi-Harami R, Carpenter SJ, Aghaei A, Collins LB (2010) Petrographical and geochemical evidences for paragenetic sequence interpretation of diagenesis in mixed siliciclastic–carbonate sediments: mozduran Formation (Upper Jurassic), south of Agh-Darband, NE Iran. Carbonates Evaporites 25:231–246

    Article  Google Scholar 

  • Maliva RG (1998) Skeletal aragonite neomorphism-quantitative modeling of a two-water diagenetic system. Sediment Geol 121(3–4):179–190

    Article  Google Scholar 

  • Matsumaru K, Sarma A (2010) Larger foraminiferal biostratigraphy of the lower Tertiary of Jaintia Hills, Meghalaya, NE India. Micropaleontology 56:539–565

    Article  Google Scholar 

  • Mehr MK, Adabi MH (2014) Microfacies and geochemical evidence for original aragonite mineralogy of a foraminifera-dominated carbonate ramp system in the late Paleocene to Middle Eocene, Alborz basin, Iran. Carbonates Evaporites 29:155–175

    Article  Google Scholar 

  • Melim LA, Swart PK, Maliva RG (2001) Meteoric and marine burial diagenesis in the subsurface of the Great Bahama Bank. In: Ginsburg RN (ed) Subsurface geology of a prograding Carbonate Platform Margin, Great Bahama Bank, SEPM Spec Publ, vol, vol 70, pp 137–162

    Chapter  Google Scholar 

  • Moradpour M, Zamani Z, Moallemi S (2008) Controls on reservoir quality in the lower Triassic Kangan formation, southern Persian Gulf. J Pet Geol 31:367–385

    Article  Google Scholar 

  • Murray JW (1973) Distribution and ecology of living benthic foraminiferids

  • Pomar L, Brandano M, Westphal H (2004) Environmental factors influencing skeletal grain sediment associations: a critical review of Miocene examples from the western Mediterra-nean. Sedimentology 51(3):627–651

    Article  Google Scholar 

  • Pomar L, Baceta JI, Hallock P, Mateu-Vicens BD (2017) Reefbuilding and carbonate production modes in the west-central Tethysduring the Cenozoic. Mar Pet Geol 83:261–304

    Article  Google Scholar 

  • Racey A (1994) Biostratigraphy.and.palaeobiogeogra-phic significance of Tertiary nummulitids (Foraminifera) from northern Oman. In: Simmons MD (ed) Micropalaeontology and hydrocarbon exploration

    Google Scholar 

  • Racey A (1995) Lithostratigraphy.and.larger.forameiniferal (Nummulitid).biostratigra-phy of the tertiary of northern Oman. Micropaleontology 41:1–123

    Article  Google Scholar 

  • Reading HG (2009) Sedimentary environments: processes, facies and stratigraphy. John Wiley & Sons

  • Reiss Z, Hottinger L (1984) The Gulf of Aqaba: ecological micropaleontology. Springer, New York, pp 1–354

  • Sarwar G, DeJong KA (1979) Arcs, oroclines, syntaxes: the curvature of mountain belts in Pakistan. In: Farah A, DeJong KA (eds) Geodynamics of Pakistan. Geol Surv Pak, Quetta, pp 341–358

    Google Scholar 

  • Scholle PA, Ulmer-Scholle DS (2003) A color guide to the petrography of carbonate rocks: grains, textures, porosity, Diagenesis, AAPG Memoir 77 (Vol. 77).

  • Selley RC (2000) Applied sedimentology, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Serra-Kiel J, Hottinger L, Caus E, Drobne K, Ferrandez C, Jauhri AK, Less G, Pavlovec R, Pignatti J, Samso JM, Schaub H (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bull Soc geol France 169:281–299

    Google Scholar 

  • Shami BA, Baig MS (2002) Geomodeling for enhancement of hydrocarbon potential of Joya Mair Field (Potwar) Pakistan. In: PAPG-SPE Annual Technical Conference, Islamabad, pp 124–145

    Google Scholar 

  • Spanicek J, Cosovic V, Mrinjek E, Vlahovic I (2017) Early Eocene evo-lution of carbonate depositional environments recorded in theˇCikolaCanyon (North Dalmatian Foreland Basin, Croatia). Geol Croat 70:11–25

    Article  Google Scholar 

  • Taghavi AR, Mørk A, Emadi MA (2006) Sequence stratigraphy controlled diagenesis governs reservoir quality in the carbonate Dehluran Field, Southwest Iran. Pet Geosci 12:115–126

    Article  Google Scholar 

  • Tucker ME (2009) Sedimentary petrology: an introduction to the origin of sedimentary rocks. John Wiley & Sons, New York

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate mineralogy and chemistry. Carbonate Sedimentology:284–313. https://doi.org/10.1002/9781444314175.ch6

  • Vincent B, Emmanuel L, Houel P, Loreau JP (2007) Geodynamic control on carbonate diagenesis: petrographic and isotopic investigation of the Upper Jurassic formations of the Paris Basin (France). Sediment Geol 197:267–289

    Article  Google Scholar 

  • Wilson JL (2012) Carbonate facies in geologic history. Springer-Verlag, Berlin

    Google Scholar 

  • Wright V (1986) Facies sequences on a carbonate ramp: the Carboniferous Limestone of South Wales. Sedimentology 33:221–224

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are extended to Directorate General of Petroleum Concessions (DGPC) and Landmark Resources (LMKR) Pakistan (Pvt) Ltd. for data and software (GeoGraphix) access. The authors are thankful to the editors of the journal, anonymous reviewers, and Prof. Dr. Mehdi Ghaedi who reviewed the manuscript critically and offered fruitful suggestions for its improvement.

Funding

The first author is indebted to the Higher Education Commission (HEC) of Pakistan for granting research program funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahseenullah Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Attila Ciner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, J., Khan, T., Shami, B.A. et al. Microfacies analysis and reservoir evaluation based on diagenetic features and log analysis of the Nammal Formation, Western and Central Salt Range, Upper Indus Basin, Pakistan. Arab J Geosci 14, 976 (2021). https://doi.org/10.1007/s12517-021-07387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07387-7

Keywords

Navigation