Skip to main content

Advertisement

Log in

14C chronology and stable isotopes on Lymnaea viatrix shells in northwest Patagonia, Argentina. Do they express the Antarctic climatic reversal?

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

A multi-isotope environmental record comprising an upper section of the late Pleistocene and the lower and middle Holocene, including isotopic data on 30 samples of peat, marl, tufa, Lymnaea viatrix shells, and Hippidion sp. teeth, is described from a 15 m profile at Arroyo Leuto Caballo, Neuquén Province, Argentina. The chronology of the Pleistocene sequence was derived from five modeled 14C ages. δ18O of L. viatrix, assumed as a proxy for δ18O of meteoric water isotopic composition and thus sensitive to air temperature changes, showed a warming period from 14.03 cal ka BP until ca. 13.90 cal ka BP, followed by a rapid decline in temperature, attaining a minimum between 13.79 and 13.56 cal ka BP and a subsequent warming reestablishment. In addition, a “specular pattern” of δ13C of L. viatrix peaking in the same time span would be probably showing aridity. This pattern developed within the globally defined Antarctic Cold Reversal-ACR-time span (from 14.6–2.8 cal ka BP), and prior to the onset of the Huelmo Mascardi Cold Reversal episode, HCMR, from ca 13.30–1.87 cal ka BP. Given the characteristics and the time span covered, it could be related to a continental expression of the ACR event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified of Sagripanti et al. 2014)

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrews JE (2006) Palaeoclimatic records from stable isotopes in riverine tufas; synthesis and review. Earth Sci Rev 75:85–104

    Article  Google Scholar 

  • Bamonte FP, Mancini MV (2011) Palaeoenvironmental changes since Pleistocene-Holocene transition: pollen analysis from a wetland in southwestern Patagonia (Argentina). Rev Palaeobot Palynol 165:103–110

    Article  Google Scholar 

  • Bianchi MM, Ariztegui D (2012) Vegetation history of the Río Manso Superior catchment area, Northern Patagonia (Argentina), since the last deglaciation. Holocene 22:1283–1295

    Article  Google Scholar 

  • Blunier T, Chappellaz J, Schwander J, DaÈllenbach J, Stauffer B, Stocker TF, Raynaud T, Jouzel J, Clausen HB, Hammer CU, Johnsen J (1998) Asynchrony of antarctic and greenland climate change during the last glacial period. Nature 394:739–743

    Article  Google Scholar 

  • Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60

    Article  Google Scholar 

  • Bronk Ramsey C, Lee S (2013) Recent and Planned Developments of the Program Oxcal. Radiocarbon 55:720–730. Oxcal 4.2.4. Electronic Resource https://journals.uair.arizona.edu/index.php/radiocarbon/article/viewFile/16215/pdf

  • Coronato AMJ, Martinez O, Rabassa J (2004) Glaciations in Argentine Patagonia, southern South America. In: Ehlers J, Gibbard P (eds) Quaternary glaciations: extent and chronology. Part III: South America, Asia, Africa, Australia and Antarctica. Elsevier, Amsterdam, pp 49–67

    Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Article  Google Scholar 

  • Dansgaard W (1961) The isotopic composition of natural waters. Medd Grønl 165:1–120

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • De Porras ME, Maldonado A, Quintana FA, Martel-Cea A, Reyes O, Méndez C (2014) Environmental and climatic changes in central Chilean Patagonia since the Late Glacial (Mallín El Embudo, 44 S). Clim Past 10:1063–1078

    Article  Google Scholar 

  • Deis E, Sidoti L, Cuervo P, Marchesi V, Imbesi G, Gómez Rueda L, Mera y Sierra RL (2008) Caracterización ambiental de sitios con presencia de Lymnaea viatrix en la provincia de Mendoza, Argentina. Colegio Médico Veterinario de la provincia de Córdoba, Córdoba, Argentina

    Google Scholar 

  • Farquhar GD, Ehleringer R, Hubic KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  Google Scholar 

  • Fritz P, Poplawsky S (1974) 18O and 13C in the shells of freshwater mollusks and their environments. Earth Planet Sci Lett 24:91–98

    Article  Google Scholar 

  • García JL, Kaplan MR, Hall BL, Schaefer JM, Vega RM, Schwartz R, Finkel R (2012) Glacier expansion in southern Patagonia throughout the Antarctic Cold Reversal. Geology 40:859–862

    Article  Google Scholar 

  • Glasser N, Harrison S, Schnabel C, Fabel D, Janson KN (2012) Younger Dryas and early Holocene age glacier advances in Patagonia. Quat Sci Rev 58:7–17

    Article  Google Scholar 

  • Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271:534–536

    Article  Google Scholar 

  • Gonzalez Diaz E, Folguera A (2011) Análisis geomorfológico del tramo médio e inferior de La cuenca de drenaje Del rio Curri Leuvú, Neuquén. Asoc Geol Arg Rev 68:17–32

    Google Scholar 

  • Hajdas I, Bonani G, Moreno PI, Aritzegui D (2003) Precise radiocarbon dating of late-glacial cooling in mid-latitude South America. Quat Res 59:70–78

    Article  Google Scholar 

  • Hogg AG, Hua Q, Blackwell PG, Niu M, Buck CE, Guilderson TP, Heaton TJ, Palmer JG, Reimer PJ, Reimer RW, Turney CSM, Zimmerman SRH (2013) SHcal13 Southern Hemisphere Calibration, 0–50,000 years cal BP. Radiocarbon 55:1889–1903

    Article  Google Scholar 

  • Iglesias V, Whitlock C, Markgraf V, Bianchi MM (2014) Postglacial history of the Patagonian forest/steppe ecotone (41–43S). Quat Sci Rev 94:120–135

    Article  Google Scholar 

  • Leger C, Tamers MA (1963) The counting of naturally occurring radiocarbon in the form of benzene in a liquid scintillation counter. Int J Appl Radiat Isot 14:65–70

    Article  Google Scholar 

  • Longinelli A (1984) Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and palaeoclimatological research. Geochim Cosmochim Acta 48:385–390

    Article  Google Scholar 

  • Markgraf V, Whitlock C, Anderson S, Garcia A (2009) Late Quaternary vegetation and fire history in the northernmost Nothofagus forest region: MallínVaca Lauquen, Neuquen Province, Argentina. J Quat Sci 24:248–258

    Article  Google Scholar 

  • McCrea JM (1950) The isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • Mehl AE, Zárate MA (2014) Late Glacial-Holocene climatic transition record at the Argentinian Andean piedmont between 33 and 34 º S. Clim Past 10:863–876

    Article  Google Scholar 

  • Moreno PI, François JP, Villa-Martínez RP, Moy CM (2009) Millenial-scale variability in Southern Hemisphere westerly wind activity over the last 5000 years in SW Patagonia. Quat Sci Rev 28:25–38

    Article  Google Scholar 

  • Newnham RM, Vandergoes MJ, Sikes E, Carter L, Wilmshurst JM, Lowef DJ, McGlone MS, Sandiford A (2012) Does the bipolar seesaw extend to the terrestrial southern mid-latitudes? Quat Sci Rev 36:214–222

    Article  Google Scholar 

  • Panarello HO (2002) Características Isotópicas y termodinámicas de reservorio del campo geotérmico Copahue-Caviahue, provincia del Neuquén. Asoc Geol Arg Rev 57:182–194

    Google Scholar 

  • Panarello HO, Dapeña C (2009) Large scale meteorological phenomena, ENSO and ITCZ, define the Paraná river isotope composition. J Hydrol 365:105–112

    Article  Google Scholar 

  • Panarello HO, Fernández J (1999) Palaeoenviromental changes in Leuto Caballo (Neuquen, Argentina) during Late Pleistocene - Holocene, Evidenced by stable isotopes on marl and Lymnaea. First results. In: Proceedings of the II South American symposium on isotope geology (IISSAGI). Argentinean Geological Service (SEGEMAR), Buenos Aires, Córdoba, Argentina, pp 418–421

  • Panarello HO, Sánchez EA (1985) The Kranz syndrome in the Eragrostideae (Chloridoieae, Poaceae) as indicated by carbon isotopic ratios. Bothalia 15:587–590

    Google Scholar 

  • Panarello HO, Garcia CM, Valencio SA, Linares E (1980) Determinación de la composición isotópica del carbono en carbonatos, su utilización en Hidrogeología y Geología. Asoc Geol Arg Rev 35:460–466

    Google Scholar 

  • Panarello HO, Sierra JL, D’Amore F, Pedro G (1992) Isotopic and geochemical study of the Domuyo Geothermal field, Neuquén, Argentina. In: proceeding of a meeting on nuclear techniques in geothermal resources investigation. San José, Costa Rica: International Atomic Energy Agency, Technical Document (TECDOC) 641: 31-56

  • Patané Aráoz CJP, Nami HG (2014) The First Paleoindian Fishtail Point Find in Salta Province, Northwestern Argentina. Archaeological Discovery 2:26–30

    Article  Google Scholar 

  • Pedro JB, van Ommen TD, Rasmussen SO, Morgan VI, Chappellaz J, Moy AD, Masson-Delmotte V, Delmotte M (2011) The last deglaciation: timing the bipolar seesaw. Clim Past 7:671-638

    Google Scholar 

  • Rabassa J (2008) The Late Cenozoic of Patagonia and Tierra del Fuego. In: Rabassa J (ed) Developments in quaternary science, vol 11. Elsevier, Amsterdam, pp 151–204

    Google Scholar 

  • Rabassa J, Coronato A, Martínez O (2011) Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review. Biol J Linn Soc 103:316–335

    Article  Google Scholar 

  • Renssen H, Goosse H, Fichefet T, Campin JM (2001) The 8.2 kyr BP event simulated by a global atmosphere–sea-ice–ocean model. Geophys Res Lett 28:567–570

    Article  Google Scholar 

  • Rozanski KP (1995) First palaeoclimatic record in arid northwest Patagonia (Neuquén, Argentina) during the Late Pleistocene and Holocene periods based on marshy shells (Lymnaea) and marl 18O analyses. Final Report of coordinated research project of international atomic energy agency (CRP F34005), 54 p

  • Sagripanti L, Folguera A, Giménez M, Rojas Vera EA, Fabiano JJ, Molnar N, Fennell L, Ramos VA (2014) Geometry of Middle to Late Triassic extensional deformation pattern in the Cordillera del Viento (Southern Central Andes): a combined field and geophysical study. J Iber Geol 40:349–366

    Article  Google Scholar 

  • Sánchez N, Coutand I, Turienzo M, Araujo V, Lebinson F, Dimieri L (2014) Historia termal de la faja corrida y plegada de Chos Malal en base a nuevos datos de termocronología en trazas de fisión en apatitos. XIX Congreso Geológico Argentino. Asociación Geológica Argentina, Córdoba, pp 22–62

    Google Scholar 

  • Shakun JD, Carlson AE (2010) A global perspective on Last Glacial Maximum to Holocene climate change. Quat Sci Rev 29:1801–1816

    Article  Google Scholar 

  • Sharp Z (2007) Principles of stable isotope geochemistry, 1st edn. Pearson Education Inc, New Jersey

    Google Scholar 

  • Sugden DE, Balco G, Cowdery SG, Stone JO, Sass LC (2005) Selective glacial erosion and weathering zones in the coastal mountains of Marie Byrd Land, Antarctica. Geomorphology 67:317–334

    Article  Google Scholar 

  • Treese KL, Wilkinson BH (1982) Peat-marl deposition in a Holocene paludal-lacustrine basin Sucker Lake, Michigan. Sedimentology 29:375–390

    Article  Google Scholar 

  • Tripaldi A, Zárate MA, Brook GA, Li GQ (2011) Late Quaternary paleoenvironments and palaeoclimatic conditions in the distal Andean piedmont, southern Mendoza, Argentina. Quat Res 76:253–263

    Article  Google Scholar 

  • Turner JV, Fritz P, Karrow PF, Warner BG (1983) Isotopic and geochemical composition of marl lake waters and implications for radiocarbon dating of marl lake sediments. Can J Earth Sci 20:599–615

    Article  Google Scholar 

  • Whitlock C, Patrick J, Bartlein PJ, Markgraf V, Marlon J, Walsh M, McCoy N (2006) Postglacial vegetation, climate, and fire history along the east side of the Andes (lat. 41–42.5 S). Argentina. Quat Res 66:187–201

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Agencia de Promoción Científica y Tecnológica Argentina (ANPCyT) BID 802-OC AR PID 0535 project and to the International Atomic Energy Agency (IAEA), Research Contract 7117/RB, within the framework of the CRP “Continental Indicators of Paleoclimate” for their financial support. This work is dedicated to the memory of Jorge Fernández (1943–2001) and Susana Valencio (1955–2005) former responsible of the Stable Isotopes Laboratory of the INGEIS. We also thank Dr. Kazimierz Rozanki (University of Science and Technology in Kraków, Poland, Faculty of Physics and Applied Computer Science) for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor O. Panarello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panarello, H.O., Sanci, R. & Wassenaar, L.I. 14C chronology and stable isotopes on Lymnaea viatrix shells in northwest Patagonia, Argentina. Do they express the Antarctic climatic reversal?. Carbonates Evaporites 34, 133–142 (2019). https://doi.org/10.1007/s13146-018-0455-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-018-0455-9

Keywords

Navigation