Skip to main content
Log in

Real Data Assimilation Using the Local Ensemble Transform Kalman Filter (LETKF) System for a Global Non-hydrostatic NWP model on the Cubed-sphere

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

An ensemble data assimilation system using the 4-dimensional Local Ensemble Transform Kalman Filter is implemented to a global non-hydrostatic Numerical Weather Prediction model on the cubed-sphere. The ensemble data assimilation system is coupled to the Korea Institute of Atmospheric Prediction Systems Package for Observation Processing, for real observation data from diverse resources, including satellites. For computational efficiency in a parallel computing environment, we employ some advanced software engineering techniques in the handling of a large number of files. The ensemble data assimilation system is tested in a semi-operational mode, and its performance is verified using the Integrated Forecast System analysis from the European Centre for Medium-Range Weather Forecasts. It is found that the system can be stabilized effectively by additive inflation to account for sampling errors, especially when radiance satellite data are additionally used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. L., 2008: Spatially and temporally varying adaptive co-variance inflation for ensemble filters. Tellus, 61, 72-83.

    Article  Google Scholar 

  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741-2758

    Article  Google Scholar 

  • Aravequia, J. A., I. Szunyogh, E. J. Fertig, E. Kalnay, D. Kuhl, and E. J. Kostelich, 2011: Evaluation of a strategy for the assimilation of satellite radiance observations with the Local Ensemble Transform Kalman Filter. Mon. Wea. Rev., 139, 1932-1951, doi:10.1175/2010MWR3515.1.

    Article  Google Scholar 

  • Bormann, N., A. Collard, and P. Bauer, 2010: Estimates of spatial and inter-channel observation error characteristics for current sounder radiances for NWP, part II: Application to AIRS and IASI. Quart. J. Roy. Meteor. Soc., 136, 1051-1063, doi:10.1002/qj.615.

    Article  Google Scholar 

  • Bormann, N., M. Bonavita, R. Dragani, R. Eresmaa, M. Matricardi, and A. McNally, 2016: Enhancing the impact of IASI observations through an updated observation-error covariance matrix. Quart. J. Roy. Meteor. Soc., 142, 1767-1780, doi:10.1002/qj.2774.

    Article  Google Scholar 

  • Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlin. Processes Geophys., 20, 669-682, doi:10.5194/npg-20-669-2013.

    Article  Google Scholar 

  • Choi. S.-J., and S.-Y. Hong, 2016: A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci., 52, 291-307, doi:10.1007/s13143-016-0005-0.

    Article  Google Scholar 

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143-10162.

    Article  Google Scholar 

  • Fertig, E. J., B. R. Hunt, E. Ott, and I. Szunyogh, 2007: Assimilating nonlocal observations with a local ensemble Kalman filter. Tellus, 59, 719-730.

    Article  Google Scholar 

  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757.

    Article  Google Scholar 

  • Grody, N., F. Weng, and R. Ferraro, 1999: Application of AMSU for obtaining water vapor, cloud liquid water, precipitation, snow cover and sea ice concentration. Proc. the Tenth International ATOVS Study Conference, Colorado, USA, BMRC, 230-240.

    Google Scholar 

  • Grody, N., J. Zhao, R. Ferraro, F. Weng, and R. Boers, 2001: Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit. J. Geophys. Res., 106, 2943-2953.

    Article  Google Scholar 

  • Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 1453-1468.

    Article  Google Scholar 

  • Hilton, F., N. C. Atkinson, S. J. English, and J. R. Eyre, 2009: Assimilation of IASI at the Met Ofce and assessment of its impact through observing system experiments. Quart. J. Roy. Meteor. Soc., 135, 495-505.

    Article  Google Scholar 

  • Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0028-9.

  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796-811.

    Article  Google Scholar 

  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 3269-3289.

    Article  Google Scholar 

  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 4489-4532, doi: 10.1175/MWR-D-15-0440.1.

    Article  Google Scholar 

  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations. Mon. Wea. Rev., 133, 604-620.

    Article  Google Scholar 

  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D., 230, 112-126.

    Article  Google Scholar 

  • Kang, J.-S., E. Kalnay, T. Miyoshi, J. Liu, and I. Fung, 2012: Estimation of surface carbon fluxes with an advanced data assimilation methodology. J. Geophys. Res., 117, D24101.

    Article  Google Scholar 

  • Kang, J.-H., H.-W. Chun, S. Lee, H.-J. Song, J.-H. Ha, I.-H. Kwon, H.-J. Han, H. Jeong, and H.-N. Kwon, 2018: Development of an observation processing package for data assimilation in KIAPS. Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0030-2.

  • Kleist, D. T. and K. Ide, 2015: An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433-451, doi:10.1175/MWR-D-13-00351.1.

    Google Scholar 

  • Kotsuki, S, Y. Ota, and T. Miyoshi, 2017: Adaptive covariance relaxation methods for ensemble data assimilation: experiments in the real atmosphere. Quart. J. Roy. Meteor. Soc., 143, 2001-2015, doi:10.1002/qj.3060.

    Article  Google Scholar 

  • Kwon, H., J.-S. Kang, Y. Jo, and J. H. Kang, 2015: Implementation of a GPS-RO data processing system for the KIAPS-LETKF data assimilation system. Atmos. Meas. Tech., 8, 1259-1273, doi:10.5194/amt-8-1259-2015.

    Article  Google Scholar 

  • Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212-229, doi: 10.1175/MWR-D-14-00195.1.

    Article  Google Scholar 

  • McNally, A. P., and P. D. Watts, 2003: A cloud detection algorithm for high-spectral-resolution infrared sounders. Quart. J. Roy. Meteor. Soc., 129, 3411-3423.

    Article  Google Scholar 

  • Miyoshi, T., 2011: The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon. Wea. Rev., 139, 1519-1535, doi:10.1175/2010MWR3570.1.

    Article  Google Scholar 

  • Miyoshi, T., and Y. Sato, 2007: Assimilating satellite radiances with a Local Ensemble Transform Kalman Filter (LETKF) applied to the JMA global model (GSM). Sci. Online Lett. Atmos., 3, 37-40.

    Google Scholar 

  • Miyoshi, T., S. Yamane, and T. Enomoto, 2007: Localizing the error covariance by physical distances within a Local Ensemble Transform Kalman Filter (LETKF). Sci. Online Lett. Atmos., 3, 89-92.

    Google Scholar 

  • Sadourny, R., 1972: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev., 100, 136-144.

    Article  Google Scholar 

  • Salonen, K., J. Cotton, N. Bormann, and M. Forsythe, 2015: Characterizing AMV height-assignment error by comparing best-fit pressure statistics from the Met Office and ECMWF data assimilation systems. J. Appl. Meteor. Climatol., 54, 225-242, doi:10.1175/JAMC-D-14-0025.1.

    Article  Google Scholar 

  • Shin, S., J.-S. Kang, and Y. Jo, 2016: The Local Ensemble Transform Kalman Filter (LETKF) with a Global NWP Model on the Cubed Sphere. Pure Appl. Geophys., 173, 2555-2570, doi:10.1007/s00024-016-1269-0.

    Article  Google Scholar 

  • Smith, A., N. Atkinson, W. Bell, and A. Doherty, 2015: An initial assessment of observations from the Suomi-NPP satellite: data from the Cross-track Infrared Sounder (CrIS). Atmos. Sci. Lett., 16, 260-266, doi:10.1002/asl2.551.

    Article  Google Scholar 

  • Song, H.-J., S. Shin, J.-H. Ha, and S. Lim, 2017: The advantages of hybrid 4DEnVar in the context of the forecast sensitivity to initial conditions. J. Geophys. Res., 122, 12226-12244, doi:10.1002/2017JD027598.

    Google Scholar 

  • Thépaut, J.-N., 2003: Satellite data assimilation in numerical weather prediction: An overview. Proc. the Annual Seminar on Recent Development in Data Assimilation for Atmosphere and Ocean, Reading, UK, ECMWF, 75-94.

    Google Scholar 

  • Weston, P., W. Bell, and J. Eyre, 2014: Accounting for correlated error in the assimilation of high resolution sounder data. Quart. J. Roy. Meteor. Soc., 140, 2420-2429, doi:10.1002/qj.2306.

    Article  Google Scholar 

  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 3078-3089, doi:10.1175/MWR-D-11-00276.1.

    Article  Google Scholar 

  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP global forecast system. Mon. Wea. Rev., 136, 463-481.

    Article  Google Scholar 

  • Yamazaki, A., T. Enomoto, T. Miyoshi, A. Kuwano-Yoshida, and N. Komori, 2017: Using Observations near the poles in the AFES-LETKF data assimilation system. Sci. Online Lett. Atmos., 13, 41-46, doi:10. 2151/sola.2017-008.

    Google Scholar 

  • Yang, S.-C., E. Kalnay, and T. Enomoto, 2015: Ensemble singular vectors and their use as additive inflation in ENKF. Tellus A, 67, 26536, doi:10.3402/tellusa.v67.26536.

    Article  Google Scholar 

  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 1238-1253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seoleun Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S., Kang, JH., Chun, HW. et al. Real Data Assimilation Using the Local Ensemble Transform Kalman Filter (LETKF) System for a Global Non-hydrostatic NWP model on the Cubed-sphere. Asia-Pacific J Atmos Sci 54 (Suppl 1), 351–360 (2018). https://doi.org/10.1007/s13143-018-0022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-018-0022-2

Key words

Navigation