Skip to main content

Advertisement

Log in

Recent Advances in Cancer Imaging with 64CuCl2 PET/CT

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Copper is required for cancer cell proliferation and tumor angiogenesis. Radioactive copper-64 chloride (64CuCl2) is a useful radiotracer for cancer imaging with position emission tomography (PET) based on increased cellular uptake of copper mediated by human copper transporter 1 (hCtr1) expressed on cancer cell membrane. Significant progress has been made in research of using 64CuCl2 as a radiotracer for cancer imaging with PET. Radiation dosimetry study in humans demonstrated radiation safety of 64CuCl2. Recently, 64CuCl2 was successfully used for PET imaging of prostate cancer, bladder cancer, glioblastoma multiforme (GBM), and non-small cell lung carcinoma in humans. Based on the findings from the preclinical research studies, 64CuCl2 PET/CT also holds potential for diagnostic imaging of human hepatocellular carcinoma (HCC), malignant melanoma, and detection of intracranial metastasis of copper-avid tumors based on low physiological background of radioactive copper uptake in the brain. Copper-64 radionuclide emits both β+ and β particles, suggesting therapeutic potential of 64CuCl2 for radionuclide cancer therapy of copper-avid tumors. Recent progress in production of therapeutic copper-67 radionuclide invites clinical research in use of theranostic pair of 64CuCl2 and 67CuCl2 for cancer imaging and radionuclide therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Solomons NW. Biochemical, metabolic, and clinical role of copper in human nutrition. J Am Coll Nutr. 1985;4:83–105.

    Article  CAS  Google Scholar 

  2. Wachnik A. The physiological role of copper and the problems of copper nutritional deficiency. Nahrung. 1988;2:755–65.

    Article  Google Scholar 

  3. Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature. 2014;509:492–6.

    Article  CAS  Google Scholar 

  4. Safi R, Nelson ER, Chitneni SK, Franz KJ, George DJ, Zalutsky MR, et al. Copper signaling axis as a target for prostate cancer therapeutics. Cancer Res. 2014;74:5819–31.

    Article  CAS  Google Scholar 

  5. Peng F, Lu X, Janisse J, Muzik O, Shields AF. Positron emission tomography of human prostate cancer xenografts in mice with increased uptake of copper (II)-64 chloride. J Nucl Med. 2006;47:1649–52.

    CAS  PubMed  Google Scholar 

  6. Cai H, Wu JS, Muzik O, Hsieh JT, Lee RJ, Peng F. Reduced 64Cu uptake and tumor growth inhibition by knockdown of human copper transporter 1 in xenograft mouse model of prostate cancer. J Nucl Med. 2014;55:622–8.

    Article  CAS  Google Scholar 

  7. Zhang H, Cai H, Lu X, Muzik O, Peng F. Positron emission tomography of human hepatocellular carcinoma xenografts in mice using copper (II)-64 chloride as a tracer with copper (II)-64 chloride. Acad Radiol. 2011;18:1561–8.

    Article  Google Scholar 

  8. Jørgensen JT, Persson M, Madsen J, Kjær A. High tumor uptake of 64Cu: implications for molecular imaging of tumor characteristics with copper-based PET tracers. Nucl Med Biol. 2013;40:345–50.

    Article  Google Scholar 

  9. Ferrari C, Asabella AN, Villano C, Giacobbi B, Coccetti D, Panichelli P, et al. Copper-64 dichloride as theranostic agent for glioblastoma multiforme: a preclinical study. Biomed Res Int. 2015;129764.

  10. Qin C, Liu H, Chen K, Hu X, Ma X, Lan X, et al. Theranostics of malignant melanoma with 64CuCl2. J Nucl Med. 2014;55:812–7.

    Article  CAS  Google Scholar 

  11. Kim KI, Jang SJ, Park JH, Lee YJ, Lee TS, Woo KS, et al. Detection of increased 64Cu uptake by human copper transporter 1 gene overexpression using PET with 64CuCl2 in human breast cancer xenograft model. J Nucl Med. 2014;55:1692–8.

    Article  CAS  Google Scholar 

  12. Wang Q, Song D, Ma X, Wu X, Jiang L. Preclinical PET imaging study of lung cancer with 64CuCl2. Ann Nucl Med. 2020;34:653–62.

    Article  CAS  Google Scholar 

  13. Kjærgaard K, Sandahl TD, Frisch K, Vase KH, Keiding S, Vilstrup H, et al. Intravenous and oral copper kinetics, biodistribution and dosimetry in healthy humans studied by [(64)Cu]copper PET/CT. EJNMMI Radiopharm Chem. 2020;5:15.

    Article  Google Scholar 

  14. Capasso E, Durzu S, Piras S, Zandieh S, Knoll P, Haug A, et al. Role of 64CuCl 2 PET/CT in staging of prostate cancer. Ann Nucl Med. 2015;6:482–8.

    Article  Google Scholar 

  15. Piccardo A, Paparo F, Puntoni M, Righi S, Bottoni G, Bacigalupo L, et al. 64CuCl2 PET/CT in prostate cancer relapse. J Nucl Med. 2018;59:444–51.

    Article  CAS  Google Scholar 

  16. Righi S, Ugolini M, Bottoni G, Puntoni M, Iacozzi M, Paparo F, et al. Biokinetic and dosimetric aspects of 64CuCl2 in human prostate cancer: possible theranostic implications. EJNMMI Res. 2018;8:18.

    Article  Google Scholar 

  17. Paparo F, Peirano A, Matos J, Bacigalupo L, Rossi U, Mussetto I, et al. Diagnostic value of retrospectively fused (64)CuCl(2) PET/MRI in biochemical relapse of prostate cancer: comparison with fused (18)F-Choline PET/MRI, (64)CuCl2 PET/CT, (18)F-Choline PET/CT, and mpMRI. Abdom Radiol. 2020;45:3896–906.

    Article  Google Scholar 

  18. Schuster DM, Votaw JR, Nieh PT, Yu W, Nye JA, Master V, et al. Initial experience with the radiotracer anti-1-amino-3-18Ffluororacyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med. 2007;48:56–63.

    CAS  PubMed  Google Scholar 

  19. Hicks RM, Simko JP, Westphalen AC, Nguyen HG, Greene KL, Zhang L, et al. Diagnostic accuracy of 68 Ga-PSMA-11 PET/MRI compared with multiparametric MRI in the detection of prostate cancer. Radiology. 2018;289:730–7.

    Article  Google Scholar 

  20. Giesel FL, Knorr K, Spohn F, Will L, Maurer T, Flechsig P, et al. Detection efficacy of (18)F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy. J Nucl Med. 2019;60:362–8.

    Article  CAS  Google Scholar 

  21. Ceci F, Fendler W, Eiber M. A new type of prostate cancer imaging: will 64CuCl2 PET/CT flourish or vanish? J Nucl Med. 2018;59:442–3.

    Article  CAS  Google Scholar 

  22. Parmar A, Pascali G, Voli F, Lerra L, Yee E, Ahmed-Cox A, et al. In vivo [(64)Cu]CuCl(2) PET imaging reveals activity of Dextran-Catechin on tumor copper homeostasis. Theranostics. 2018;8:5645–59.

    Article  CAS  Google Scholar 

  23. Mascia M, Villano C, De Francesco V, Schips L, Marchioni M, Cindolo L. Efficacy and safety of the 64Cu(II)Cl2 PET/CT for urological malignancies: phase IIa clinical study. Clin Nucl Med. 2021;46:443–8.

    Article  Google Scholar 

  24. Panichelli P, Villano C, Cistaro A, Bruno A, Barbato F, Piccardo A, et al. Imaging of brain tumors with copper-64 chloride: early experience and results. Cancer Biother Radiopharm. 2016;31:159–67.

    Article  CAS  Google Scholar 

  25. García-Pérez FO, Medina-Ornelas SS, Barron-Barron F, Arrieta-Rodriguez O. Evaluation of non-small cell lung cancer by PET/CT with 64CuCl2: initial experience in humans. Am J Nucl Med Mol Imaging. 2020;10:143–50.

    PubMed  PubMed Central  Google Scholar 

  26. Apelgot S, Coppey J, Gaudemer A, Grisvard J, Guille E, Sasaki I, et al. Similar lethal effect in mammalian cells for two radioisotopes of copper with different decay schemes, 64Cu and 67Cu. Int J Radiat Biol. 1998;55:365–84.

    Article  Google Scholar 

  27. Guerreiro JF, Alves V, Abrunhosa AJ, Paulo A, Gil OM, Mendes F. Radiobiological characterization of 64CuCl2 as a simple tool for prostate cancer Theranostics. Molecules. 2018;23:2944.

    Article  Google Scholar 

  28. Gutfilen B, Souza SA, Valentini G. Copper-64: a real theranostic agent. Drug Des Devel Ther. 2018;12:3235–45.

    Article  CAS  Google Scholar 

  29. Pinto CIG, Bucar S, Alves V, Fonseca A, Abrunhosa AJ, da Silva CL, et al. Copper-64 chloride exhibits therapeutic potential in three-dimensional cellular models of prostate cancer. Front Mol Biosci. 2020;7:609172.

    Article  CAS  Google Scholar 

  30. Peng F, Liu J, Wu JS, Lu X, Muzik O. Mouse extrahepatichepatoma detected on MicroPET using copper (II)-64 chloride uptake mediated by endogenous mouse copper transporter 1. Mol Imaging Biol. 2005;7:325–9.

    Article  Google Scholar 

  31. Medvedev DG, Mausner LF, Meinken GE, Kurczak SO, Schnakenberg H, Dodge CJ, et al. Development of a large scale production of 67Cu from 68Zn at the high energy proton accelerator: closing the 68Zn cycle. Appl Radiat Isot. 2012;70:423–9.

    Article  CAS  Google Scholar 

  32. Souliotis GA, Rodrigues MRD, Wang K, Iacob V, Nicab N, Roederb B, et al. A novel approach to medical radioisotope production using inverse kinematics: a successful production test of the theranostic radionuclide 67Cu. Appl Radiat Isot. 2019;149:89–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangyu Peng.

Ethics declarations

Conflict of Interest

Fangyu Peng declares no competing interests.

Ethical Approval

Not applicable

Informed Consent

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, F. Recent Advances in Cancer Imaging with 64CuCl2 PET/CT. Nucl Med Mol Imaging 56, 80–85 (2022). https://doi.org/10.1007/s13139-022-00738-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-022-00738-6

Keywords

Navigation