Skip to main content
Log in

Nuclear Theranostics in Taiwan

  • Perspective
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Boron neutron capture therapy and Y-90 radioembolization are emerging therapeutic methods for uncontrolled brain cancers and hepatic cancers, respectively. These advanced radiation therapies are heavily relied on theranostic nuclear medicine imaging before the therapy for the eligibility of patients and the prescribed-dose simulation, as well as the post-therapy scanning for assessing the treatment efficacy. In Taiwan, the Taipei Veterans General Hospital is the only institute performing the BNCT and also the leading institute performing Y-90 radioembolization. In this article, we present our single institute experiences and associated theranostic nuclear medicine approaches for these therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barth RF, Zhang Z, Liu T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun (Lond). 2018;38:36.

    Article  Google Scholar 

  2. Barth RF, Coderre JA, Vicente MG, Blue TE. Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res. 2005;11:3987–4002.

    Article  CAS  PubMed  Google Scholar 

  3. Wongthai P, Hagiwara K, Miyoshi Y, Wiriyasermkul P, Wei L, Ohgaki R, et al. Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2. Cancer Sci. 2015;106:279–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ishiwata K, Ido T, Kawamura M, Kubota K, Ichihashi M, Mishima Y. 4-Borono-2-[18F]fluoro-D,L-phenylalanine as a target compound for boron neutron capture therapy: tumor imaging potential with positron emission tomography. Int J Rad Appl Instrum B. 1991;18:745–51.

    Article  CAS  PubMed  Google Scholar 

  5. Imahori Y, Ueda S, Ohmori Y, Kusuki T, Ono K, Fujii R, et al. Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med. 1998;39:325–33.

    CAS  Google Scholar 

  6. Watanabe T, Hattori Y, Ohta Y, Ishimura M, Nakagawa Y, Sanada Y, et al. Comparison of the pharmacokinetics between L-BPA and L-FBPA using the same administration dose and protocol: a validation study for the theranostic approach using [(18)F]-L-FBPA positron emission tomography in boron neutron capture therapy. BMC Cancer. 2016;16:859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoshimoto M, Honda N, Kurihara H, Hiroi K, Nakamura S, Ito M, et al. Non-invasive estimation of (10) B-4-borono-L-phenylalanine-derived boron concentration in tumors by PET using 4-borono-2-(18) F-fluoro-phenylalanine. Cancer Sci. 2018;109:1617–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang LW, Wang SJ, Chu PY, Ho CY, Jiang SH, Liu YW, et al. BNCT for locally recurrent head and neck cancer: preliminary clinical experience from a phase I/II trial at Tsing Hua Open-Pool Reactor. Appl Radiat Isot. 2011;69:1803–6.

    Article  CAS  PubMed  Google Scholar 

  9. Wang LW, Chen YW, Ho CY, Hsueh Liu YW, Chou FI, Liu YH, et al. Fractionated boron neutron capture therapy in locally recurrent head and neck cancer: a prospective phase I/II trial. Int J Radiat Oncol Biol Phys. 2016;95:396–403.

    Article  PubMed  Google Scholar 

  10. Kreiner AJ, Bergueiro J, Cartelli D, Baldo M, Castell W, Asoia JG, et al. Present status of accelerator-based BNCT. Rep Pract Oncol Radiother. 2016;21(2):95–101.

    Article  PubMed  Google Scholar 

  11. Yamazaki H, Kanno SI, Abdjul DB, Namikoshi M. A bromopyrrole-containing diterpene alkaloid from the Okinawan marine sponge Agelas nakamurai activates the insulin pathway in Huh-7 human hepatoma cells by inhibiting protein tyrosine phosphatase 1B. Bioorg Med Chem Lett. 2017;27:2207–9.

    Article  CAS  PubMed  Google Scholar 

  12. Chiesa C, Maccauro M, Romito R, Spreafico C, Pellizzari S, Negri A, et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: the experience of the National Tumor Institute of Milan. Q J Nucl Med Mol Imaging. 2011;55:168–97.

    CAS  PubMed  Google Scholar 

  13. Garin E, Rolland Y, Laffont S, Edeline J. Clinical impact of (99m)Tc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with (90)Y-loaded microspheres. Eur J Nucl Med Mol Imaging. 2016;43:559–75.

    Article  CAS  PubMed  Google Scholar 

  14. Shen S, DeNardo GL, Yuan A, DeNardo DA, DeNardo SJ. Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung. J Nucl Med. 1994;35:1381–9.

    CAS  PubMed  Google Scholar 

  15. Sarfaraz M, Kennedy AS, Lodge MA, Li XA, Wu X, Yu CX. Radiation absorbed dose distribution in a patient treated with yttrium-90 microspheres for hepatocellular carcinoma. Med Phys. 2004;31:2449–53.

    Article  PubMed  Google Scholar 

  16. Selwyn RG, Nickles RJ, Thomadsen BR, DeWerd LA, Micka JA. A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot. 2007;65:318–27.

    Article  CAS  PubMed  Google Scholar 

  17. van Elmbt L, Vandenberghe S, Walrand S, Pauwels S, Jamar F. Comparison of yttrium-90 quantitative imaging by TOF and non-TOF PET in a phantom of liver selective internal radiotherapy. Phys Med Biol. 2011;56:6759–77.

    Article  CAS  PubMed  Google Scholar 

  18. Kao YH, Steinberg JD, Tay YS, Lim GK, Yan J, Townsend DW, et al. Post-radioembolization yttrium-90 PET/CT - part 2: dose-response and tumor predictive dosimetry for resin microspheres. EJNMMI Res. 2013;3:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elschot M, Vermolen BJ, Lam MG, de Keizer B, van den Bosch MA, de Jong HW. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS One. 2013;8:e55742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park HC, Yu JI, Cheng JC, Zeng ZC, Hong JH, Wang ML, et al. Consensus for radiotherapy in hepatocellular carcinoma from the 5th Asia-Pacific primary liver cancer expert meeting (APPLE 2014): current practice and future clinical trials. Liver Cancer. 2016;5:162–74.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Braat AJ, Smits ML, Braat MN, van den Hoven AF, Prince JF, de Jong HW, et al. (9)(0)Y hepatic radioembolization: an update on current practice and recent developments. J Nucl Med. 2015;56:1079–87.

    Article  PubMed  Google Scholar 

  22. Sangro B, Carpanese L, Cianni R, Golfieri R, Gasparini D, Ezziddin S, et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology. 2011;54:868–78.

    Article  Google Scholar 

  23. Wang TH, Huang PI, Hu YW, Lin KH, Liu CS, Lin YY, et al. Combined Yttrium-90 microsphere selective internal radiation therapy and external beam radiotherapy in patients with hepatocellular carcinoma: from clinical aspects to dosimetry. PLoS One. 2018;13:e0190098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Doctor Yu-Hui, Hu for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Ko-Han Lin, Yi-Wei Chen and Rheun-Chuan Lee contribute equally.

Corresponding authors

Correspondence to Sang-Hue Yen or Wen-Sheng Huang.

Ethics declarations

Conflict of Interest

Ko-Han Lin, Yi-Wei Chen, Rheun-Chuan Lee, Ling-Wei Wang, Fong-In Chou, Chi-Wei Chang, Sang-Hue Yen, and Wen-Sheng Huang declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, KH., Chen, YW., Lee, RC. et al. Nuclear Theranostics in Taiwan. Nucl Med Mol Imaging 53, 86–91 (2019). https://doi.org/10.1007/s13139-019-00576-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-019-00576-z

Keywords

Navigation