Skip to main content

Advertisement

Log in

FPGA-Based Interface of Digital DAQ System for Double-Scattering Compton Camera

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The double-scattering Compton camera (DSCC) is a radiation imaging system that can provide both unknown source energy spectra and 3D spatial source distributions. The energies and detection locations measured in coincidence with three CdZnTe (CZT) detectors contribute to reconstructing emission energies and a spatial image based on conical surface integrals. In this study, we developed a digital data acquisition (DAQ) board to support our research into coincidence detection in the DSCC.

Methods

The main components of the digital DAQ board were 12 ADCs and one field programmable gate array (FPGA). The ADCs digitized the analog 96-channel CZT signals at a sampling rate of 50 MHz and transferred the serialized ADC samples and the bit and frame clocks to the FPGA. In order to correctly capture the ADC sample bits in the FPGA, we conducted individual sync calibrations for all the ADC channels to align the bit and frame clocks to the right positions of the ADC sample bits. The FPGA logic design was composed of IDELAY and IDDR components, six shift registers, and bit slip buffer resources.

Results

Using a Deskew test pattern, the delay value of the IDELAY component was determined to align the bit clock to the center of each sample bit. We determined the bit slip in the 12-bit ADC sample using an MSB test pattern by checking where the MSB value of one is located in the captured parallel data.

Conclusions

After sync calibration, we tested the interface between the ADCs and the FPGA with a synthetic analog Gaussian signal. The 96 ADC channels yielded a mean R2 goodness-of-fit value of 0.95 between the Gaussian curve and the captured 12-bit parallel data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gambhir S. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2:683–93.

    Article  CAS  Google Scholar 

  2. Kwon H, Becker A-K, Goo J, Cheon G. FDG whole-body PET/MRI in oncology: a systematic review. Nucl Med Mol Imaging. 2017;51:22–31.

    Article  CAS  Google Scholar 

  3. Yoo I, Choi E, Chung Y. The current status of SPECT or SPECT/CT in South Korea. Nucl Med Mol Imaging. 2017;51:101–5.

    Article  Google Scholar 

  4. Park S, Jung U, Lee S, Lee D, Kim C. Contrast-enhanced dual mode imaging: photoacoustic imaging plus more. Biomed Eng Lett. 2017;7:121–33.

    Article  Google Scholar 

  5. Sajib S, Kwon O, Kim H, Woo E. Electrodeless conductivity tensor imaging (CTI) using MRI: basic theory and animal experiments. Biomed Eng Lett. 2018;8:273–82.

    Article  Google Scholar 

  6. Todd R, Nightingale J, Everett D. A proposed gamma camera. Nature. 1974;251:132–4.

    Article  CAS  Google Scholar 

  7. Singh M. An electronically collimated gamma camera for single photon emission computed tomography: part1 and 2. Med Phys. 1983;10:421–7.

    Article  CAS  Google Scholar 

  8. Phillips G. Gamma-ray imaging with Compton cameras. Nucl Instr and Meth. 1995;99:674–7.

    Article  CAS  Google Scholar 

  9. Jiang J, Shimazoe K, Nakamura Y, Takahashi H, Shikaze Y, Nishizawa Y, et al. A prototype of aerial radiation monitoring system using an unmanned helicopter mounting a GAGG scintillator Compton camera. J Nucl Sci Technol. 2016;53(7):1067–75.

    Article  CAS  Google Scholar 

  10. Sato Y, Kawabata K, Ozawa S, Izumi R, Kaburagi M, Tanifuji Y, et al. Radiation imaging system using a Compton gamma-ray imager mounted on a remotely operated machine. IFAC PapersOnLine. 2017;50:1062–6.

    Article  Google Scholar 

  11. Vetter K, Burks M, Cork C, Cunningham M, Chivers D, Hull E, et al. High-sensitivity Compton imaging with position-sensitive Si and Ge detectors. Nucl Instr and Meth. 2007;579:363–6.

    Article  CAS  Google Scholar 

  12. Du Y, He Z, Knoll G, Wehe D, Li W. Evaluation of a Compton scattering camera using 3-D position sensitive CdZnTe detectors. Nucl Instr and Meth. 2001;457:203–11.

    Article  CAS  Google Scholar 

  13. Watanabe S, Tanaka T, Oonuki K, Mitani T, Takeda S, Kishishita T, et al. Development of CdTe pixel detectors for Compton cameras. Nucl Instr and Meth. 2006;567:150–3.

    Article  CAS  Google Scholar 

  14. Wulf E, Phlips B, Johnson W, Kurfess J, Novikova E. Thick silicon strip detector Compton imager. IEEE Trans Nucl Sci. 2004;51:1997–2003.

    Article  CAS  Google Scholar 

  15. Yang Y, Gono Y, Motomura S, Enomoto S, Yano Y. A Compton camera for multitracer imaging. IEEE Trans Nucl Sci. 2001;48:656–61.

    Article  Google Scholar 

  16. Motomura S, Enomoto S, Haba H, Igarashi K, Gono Y, Yano Y. Gamma-ray Compton imaging of multitracer in biological samples using strip germanium telescope. IEEE Trans Nucl Sci. 2007;54:710–7.

    Article  Google Scholar 

  17. Motomura S, Kanayama Y, Haba H, Watanabe Y, Enomoto S. Multiple molecular simultaneous imaging in a live mouse using semiconductor Compton camera. J Anal At Spectrom. 2008;23:1089–92.

    Article  CAS  Google Scholar 

  18. Seo H, Kim C, Park J, Kim J, Lee J, Lee C, et al. Multitracing capability of double-scattering Compton imager with NaI(Tl) scintillator absorber. IEEE Trans Nucl Sci. 2010;57:1420–5.

    Article  CAS  Google Scholar 

  19. Peterson S, Robertson D, Polf J. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy. Phys Med Biol. 2010;55:6841–56.

    Article  CAS  Google Scholar 

  20. Richard M-H, Chevallier M, Dauvergne D, Freud N, Henriquet P, Le Foulher F, et al. Design guidelines for a double scattering Compton camera for prompt-γ imaging during ion beam therapy: a Monte Carlo simulation study. IEEE Trans Nucl Sci. 2011;58:87–94.

    Article  Google Scholar 

  21. Kamea T, Enomoto R, Hanada N. A new method to measure energy, direction, and polarization of gamma-rays. Nucl Inst Methods Phys Res A. 1987;260:254–7.

    Article  Google Scholar 

  22. Kamea T, Hanada H. Prototype design of multiple Compton gamma-ray camera. IEEE Trans Nucl Sci. 1988;35:352–5.

    Article  Google Scholar 

  23. Dogan N, Wehe DK, Knoll GF. Multiple Compton scattering gamma ray imaging camera. Nucl Inst Methods Phys Res A. 1990;299:501–6.

    Article  Google Scholar 

  24. Smith B. Reconstruction methods and completeness conditions for two Compton data models. J Opt Soc Am A. 2005;22:445–59.

    Article  Google Scholar 

  25. Kim S, Lee J, Lee C, Kim C, Lee M, Lee D, et al. Fully three-dimensional OSEM-based image reconstruction for Compton imaging using optimized ordering schemes. J Opt Soc Am A Opt Image Sci Vis. 2010;55:5007–27.

    Google Scholar 

  26. Kim S, Seo H, Park J, Kim C, Lee C, Lee S-J, et al. Resolution recovery reconstruction for a Compton camera. Phys Med Biol. 2013;58:2823–40.

    Article  Google Scholar 

  27. Ko G, Yoon H, Kwon S, Hong S, Lee D, Lee J. Development of FPGA-based coincidence units with veto function. Biomed Eng Lett. 2011;1:27–31.

    Article  Google Scholar 

  28. ADS5281 Analog-to-Digital Converter (ADC). TI.com. http://www.ti.com/product/ADS5281 of subordinate document. Accessed 24 Aug 2018.

  29. Artix-7 FPGA Family. Xilinx.com. http://www.xilinx.com/products/silicon-devices/fpga/artix-7.html#productTable of subordinate document. Accessed 24 Aug 2018.

Download references

Funding

The authors would like to gratefully acknowledge the financial support by the Nuclear R&D Program of the Ministry of Science, the ICT & Future Planning (MSIP) of South Korea (NRF-2013M2A2A4023359), and research grants from Korea Institute of Ocean Science and Technology (PE99672).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Mee Kim.

Ethics declarations

Conflict of Interest

Soo Mee Kim and Young Soo Kim declare that they have no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.M., Kim, Y.S. FPGA-Based Interface of Digital DAQ System for Double-Scattering Compton Camera. Nucl Med Mol Imaging 52, 430–437 (2018). https://doi.org/10.1007/s13139-018-0551-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-018-0551-8

Keywords

Navigation