Skip to main content
Log in

Signal analysis via instantaneous frequency estimation of signal components

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

The empirical mode decomposition (EMD) algorithm, introduced by Huang et al. (Proc Roy Soc Lond Ser A Math Phys Eng Sci 454(1971):903–995, 1998), is arguably the most popular mathematical scheme for non-stationary signal decomposition and analysis. The objective of EMD is to separate a given signal into a number of components, called intrinsic mode functions (IMF’s) after which the instantaneous frequency (IF) and amplitude of each IMF are computed through Hilbert spectral analysis (HSA). On the other hand, the synchrosqueezed wavelet transform (SST), introduced by Daubechies and Maes (Wavelets in Medicine and Biology, pp. 527–546, 1996) and further developed by Daubechies et al. (Appl Comput Harmon Anal 30:243–261, 2011), is applied to estimate the IF’s of all signal components of the given signal, based on one single reference “IF function”, under the assumption that the signal components satisfy certain strict properties of a so-called adaptive harmonic model, before the signal components of the model are recovered. The objective of our paper is to develop a hybrid EMD-SST computational scheme by applying a “modified SST” to each IMF of the EMD, as an alternative approach to the original EMD-HSA method. While our modified SST assures non-negative instantaneous frequencies of the IMF’s, application of the EMD scheme eliminates the dependence on a single reference IF value as well as the guessing work of the number of signal components in the original SST approach. Our modification of the SST consists of applying vanishing moment wavelets (introduced in a recent paper by C.K. Chui, Y.-T. Lin and H.-T. Wu) with stacked knots to process signals on bounded or half-infinite time intervals, and spline curve fitting with optimal smoothing parameter selection through generalized cross-validation. In addition, we formulate a local cubic spline interpolation scheme for real-time realization of the EMD sifting process that improves over the standard global cubic spline interpolation, both in quality and computational cost, particularly when applied to bounded and half-infinite time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Boashash, B.: Estimating and interpreting the instantaneous frequency of a signal. i. Fundamentals. Proc. IEEE 80(4), 520–538 (1992)

    Article  Google Scholar 

  • Boashash, B.: Estimating and interpreting the instantaneous frequency of a signal. ii. Algorithms and applications. Proc. IEEE 80(4), 540–568 (1992)

    Article  Google Scholar 

  • Carew, J.D., Wahba, G., Xie, X., Nordheim, E.V., Elizabeth Meyerand, M.: Optimal spline smoothing of fmri time series by generalized cross-validation. NeuroImage 18(4), 950–961 (2003)

    Article  Google Scholar 

  • Chen, G., Chui, Charles K., Lai, M.J.: Construction of real-time spline quasi-interpolation schemes. Approx. Theory Appl. 4(4), 61–75 (1988)

    MATH  MathSciNet  Google Scholar 

  • Chen, Q., Huang, N.E., Riemenschneider, S., Xu, Y.: A B-spline approach for empirical mode decompositions. Adv. Comput. Math. 24(1–4), 171–195 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, Y.-C., Cheng, M.-Y., Wu, H.-T.: Non-parametric and adaptive modelling of dynamic periodicity and trend with heteroscedastic and dependent errors. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 76(3), 651–682 (2014)

    Article  MathSciNet  Google Scholar 

  • Chui, C.K., Mhaskar, H.N.: Signal decomposition and analysis via extraction of frequencies. Appl. Comput. Harmon. Anal. (2015). http://dx.doi.org/10.1016/j.acha.2015.01.003

  • Chui, C.K., Diamond, H.: A general framework for local interpolation. Numerische Mathematik 58(1), 569–581 (1990)

    Article  MathSciNet  Google Scholar 

  • Chui, C.K., Lin, Y.-T., Wu, H.-T.: Real-time dynamics acquisition from irregular samples—with application to anesthesia evaluation. arXiv preprint arXiv:1406.1276 (2014)

  • Craven, P., Wahba, G.: Smoothing noisy data with spline functions. Numerische Mathematik 31(4), 377–403 (1978)

    Article  MathSciNet  Google Scholar 

  • Curry, H.B., Schoenberg, I.J.: On Pólya frequency functions iv: The fundamental spline functions and their limits. Journal d’Analyse Math-matique 17(1), 71–107 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  • Daubechies, I., Lu, J., Wu, H.-T.: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30, 243–261 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Daubechies, I., Maes, S.: A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models. In: Aldroubi, A., Unser, M.A. (eds.) Wavelets in Medicine and Biology, pp. 527–546. CRC Press, Boca Raton (1996)

  • de Boor, C.: A Practical Guide to Splines. Applied Mathematical Sciences, vol. 27. Springer, Berlin (2001)

  • de Boor, C., Fix, G.: Spline approximation by quasi-interpolants. J. Approx. Theory 8, 96–110 (1973)

    Google Scholar 

  • Gabor, D.: Theory of communication. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 93(26), 429–441 (1946)

    Google Scholar 

  • Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  • Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 43(3–4), 172–198 (1927)

    Article  MATH  Google Scholar 

  • Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)

  • Huang, N.E., Wu, Z.: A review on Hilbert-Huang transform: method and its applications to geophysical studies. Rev. Geophys. 46(2), 1–23 (2008)

    Article  Google Scholar 

  • Kennard, E.H.: Zur Quantenmechanik einfacher Bewegungstypen. Zeitschrift für Physik 44(4–5), 326–352 (1927)

    Article  MATH  Google Scholar 

  • Rilling, G., Flandrin, P.: One or two frequencies? the empirical mode decomposition answers. IEEE Trans. Signal Process. 56(1), 85–95 (2008)

    Article  MathSciNet  Google Scholar 

  • Sharpley, R.C., Vatchev, V.: Analysis of the intrinsic mode functions. Constr. Approx. 24(1), 17–47 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Thakur, G., Wu, H.-T.: Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples. SIAM J. Math. Anal. 43(5), 2078–2095 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Van der Pol, B.: The fundamental principles of frequency modulation. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 93(23), 153–158 (1946)

    Google Scholar 

  • Wahba, G.: Smoothing noisy data with spline functions. Numerische Mathematik 24(5), 383–393 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  • Weyl, H.: Gruppentheorie und Quantenmechanik (1928)

  • Wu, H.-T., Flandrin, P., Daubechies, I.: One or two frequencies? The synchrosqueezing answers. Adv. Adapt. Data Anal. 3(01n02), 29–39 (2011)

  • Wu, Z., Huang, N.E.: A study of the characteristics of white noise using the empirical mode decomposition method. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2046), 1597–1611 (2004)

  • Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adap. Data Anal. 1(01), 1–41 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The research of Charles K. Chui was supported by ARO Grant # W911 NF-11-1-0426.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria D. van der Walt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chui, C.K., van der Walt, M.D. Signal analysis via instantaneous frequency estimation of signal components. Int J Geomath 6, 1–42 (2015). https://doi.org/10.1007/s13137-015-0070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-015-0070-z

Keywords

Mathematics Subject Classification

Navigation