Signal analysis via instantaneous frequency estimation of signal components

Original Paper

Abstract

The empirical mode decomposition (EMD) algorithm, introduced by Huang et al. (Proc Roy Soc Lond Ser A Math Phys Eng Sci 454(1971):903–995, 1998), is arguably the most popular mathematical scheme for non-stationary signal decomposition and analysis. The objective of EMD is to separate a given signal into a number of components, called intrinsic mode functions (IMF’s) after which the instantaneous frequency (IF) and amplitude of each IMF are computed through Hilbert spectral analysis (HSA). On the other hand, the synchrosqueezed wavelet transform (SST), introduced by Daubechies and Maes (Wavelets in Medicine and Biology, pp. 527–546, 1996) and further developed by Daubechies et al. (Appl Comput Harmon Anal 30:243–261, 2011), is applied to estimate the IF’s of all signal components of the given signal, based on one single reference “IF function”, under the assumption that the signal components satisfy certain strict properties of a so-called adaptive harmonic model, before the signal components of the model are recovered. The objective of our paper is to develop a hybrid EMD-SST computational scheme by applying a “modified SST” to each IMF of the EMD, as an alternative approach to the original EMD-HSA method. While our modified SST assures non-negative instantaneous frequencies of the IMF’s, application of the EMD scheme eliminates the dependence on a single reference IF value as well as the guessing work of the number of signal components in the original SST approach. Our modification of the SST consists of applying vanishing moment wavelets (introduced in a recent paper by C.K. Chui, Y.-T. Lin and H.-T. Wu) with stacked knots to process signals on bounded or half-infinite time intervals, and spline curve fitting with optimal smoothing parameter selection through generalized cross-validation. In addition, we formulate a local cubic spline interpolation scheme for real-time realization of the EMD sifting process that improves over the standard global cubic spline interpolation, both in quality and computational cost, particularly when applied to bounded and half-infinite time intervals.

Keywords

Time–frequency analysis Instantaneous frequency Empirical mode decomposition Intrinsic mode functions Synchrosqueezing wavelet transform Hilbert transform Hilbert spectrum Adaptive harmonic model Local spline interpolation 

Mathematics Subject Classification

94A12 41A05 41A15 

References

  1. Boashash, B.: Estimating and interpreting the instantaneous frequency of a signal. i. Fundamentals. Proc. IEEE 80(4), 520–538 (1992)CrossRefGoogle Scholar
  2. Boashash, B.: Estimating and interpreting the instantaneous frequency of a signal. ii. Algorithms and applications. Proc. IEEE 80(4), 540–568 (1992)CrossRefGoogle Scholar
  3. Carew, J.D., Wahba, G., Xie, X., Nordheim, E.V., Elizabeth Meyerand, M.: Optimal spline smoothing of fmri time series by generalized cross-validation. NeuroImage 18(4), 950–961 (2003)CrossRefGoogle Scholar
  4. Chen, G., Chui, Charles K., Lai, M.J.: Construction of real-time spline quasi-interpolation schemes. Approx. Theory Appl. 4(4), 61–75 (1988)MATHMathSciNetGoogle Scholar
  5. Chen, Q., Huang, N.E., Riemenschneider, S., Xu, Y.: A B-spline approach for empirical mode decompositions. Adv. Comput. Math. 24(1–4), 171–195 (2006)CrossRefMATHMathSciNetGoogle Scholar
  6. Chen, Y.-C., Cheng, M.-Y., Wu, H.-T.: Non-parametric and adaptive modelling of dynamic periodicity and trend with heteroscedastic and dependent errors. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 76(3), 651–682 (2014)CrossRefMathSciNetGoogle Scholar
  7. Chui, C.K., Mhaskar, H.N.: Signal decomposition and analysis via extraction of frequencies. Appl. Comput. Harmon. Anal. (2015). http://dx.doi.org/10.1016/j.acha.2015.01.003
  8. Chui, C.K., Diamond, H.: A general framework for local interpolation. Numerische Mathematik 58(1), 569–581 (1990)CrossRefMathSciNetGoogle Scholar
  9. Chui, C.K., Lin, Y.-T., Wu, H.-T.: Real-time dynamics acquisition from irregular samples—with application to anesthesia evaluation. arXiv preprint arXiv:1406.1276 (2014)
  10. Craven, P., Wahba, G.: Smoothing noisy data with spline functions. Numerische Mathematik 31(4), 377–403 (1978)CrossRefMathSciNetGoogle Scholar
  11. Curry, H.B., Schoenberg, I.J.: On Pólya frequency functions iv: The fundamental spline functions and their limits. Journal d’Analyse Math-matique 17(1), 71–107 (1966)CrossRefMATHMathSciNetGoogle Scholar
  12. Daubechies, I., Lu, J., Wu, H.-T.: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30, 243–261 (2011)CrossRefMATHMathSciNetGoogle Scholar
  13. Daubechies, I., Maes, S.: A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models. In: Aldroubi, A., Unser, M.A. (eds.) Wavelets in Medicine and Biology, pp. 527–546. CRC Press, Boca Raton (1996)Google Scholar
  14. de Boor, C.: A Practical Guide to Splines. Applied Mathematical Sciences, vol. 27. Springer, Berlin (2001)Google Scholar
  15. de Boor, C., Fix, G.: Spline approximation by quasi-interpolants. J. Approx. Theory 8, 96–110 (1973)Google Scholar
  16. Gabor, D.: Theory of communication. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 93(26), 429–441 (1946)Google Scholar
  17. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979)CrossRefMATHMathSciNetGoogle Scholar
  18. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 43(3–4), 172–198 (1927)CrossRefMATHGoogle Scholar
  19. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)Google Scholar
  20. Huang, N.E., Wu, Z.: A review on Hilbert-Huang transform: method and its applications to geophysical studies. Rev. Geophys. 46(2), 1–23 (2008)CrossRefGoogle Scholar
  21. Kennard, E.H.: Zur Quantenmechanik einfacher Bewegungstypen. Zeitschrift für Physik 44(4–5), 326–352 (1927)CrossRefMATHGoogle Scholar
  22. Rilling, G., Flandrin, P.: One or two frequencies? the empirical mode decomposition answers. IEEE Trans. Signal Process. 56(1), 85–95 (2008)CrossRefMathSciNetGoogle Scholar
  23. Sharpley, R.C., Vatchev, V.: Analysis of the intrinsic mode functions. Constr. Approx. 24(1), 17–47 (2006)CrossRefMATHMathSciNetGoogle Scholar
  24. Thakur, G., Wu, H.-T.: Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples. SIAM J. Math. Anal. 43(5), 2078–2095 (2011)CrossRefMATHMathSciNetGoogle Scholar
  25. Van der Pol, B.: The fundamental principles of frequency modulation. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 93(23), 153–158 (1946)Google Scholar
  26. Wahba, G.: Smoothing noisy data with spline functions. Numerische Mathematik 24(5), 383–393 (1975)CrossRefMATHMathSciNetGoogle Scholar
  27. Weyl, H.: Gruppentheorie und Quantenmechanik (1928)Google Scholar
  28. Wu, H.-T., Flandrin, P., Daubechies, I.: One or two frequencies? The synchrosqueezing answers. Adv. Adapt. Data Anal. 3(01n02), 29–39 (2011)Google Scholar
  29. Wu, Z., Huang, N.E.: A study of the characteristics of white noise using the empirical mode decomposition method. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2046), 1597–1611 (2004)Google Scholar
  30. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adap. Data Anal. 1(01), 1–41 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of StatisticsStanford UniversityStanfordUSA
  2. 2.Department of Mathematics and Computer ScienceUniversity of Missouri-St. LouisSt. LouisUSA

Personalised recommendations